17.已知i是虛數(shù)單位,復(fù)數(shù)z滿足(1-i)z=i,則|z|=( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.1D.$\sqrt{2}$

分析 由(1-i)z=i,可得(1+i)(1-i)z=i(1+i),可得z,再利用模的計算公式即可得出.

解答 解:(1-i)z=i,
∴(1+i)(1-i)z=i(1+i),
∴z=$-\frac{1}{2}$+$\frac{1}{2}$i.  
則|z|=$\sqrt{(-\frac{1}{2})^{2}+(\frac{1}{2})^{2}}$=$\frac{\sqrt{2}}{2}$.
故選:B.

點(diǎn)評 本題考查了復(fù)數(shù)的運(yùn)算法則、共軛復(fù)數(shù)的定義、模的計算公式,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$與拋物線y2=2px(p>0)相交于A,B兩點(diǎn),直線AB恰好經(jīng)過它們的公共焦點(diǎn)F,則雙曲線的離心率為1+$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知向量$\overrightarrow a$=(1,m),$\vec b$=(m,m-3),若$\overrightarrow a⊥\vec b$,則m=0或2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知直線l與橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)交于A、B兩點(diǎn),M為線段AB的中點(diǎn),延長OM交橢圓C于P.
(1)若直線l與直線OM的斜率之積為-$\frac{1}{4}$,且橢圓的長軸為4,求橢圓C的方程;
(2)若四邊形OAPB為平行四邊形,求四邊形OAPB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知復(fù)數(shù)$z=\frac{2-i}{2+i}-\frac{2+i}{2-i}$,則z=( 。
A.-$\frac{8i}{5}$B.$\frac{8i}{5}$C.$-\frac{6}{5}$D.$\frac{6}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知方程x2+y2-2x+2y+F=0表示半徑為2的圓,則實數(shù)F=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若f(x)是偶函數(shù),且在[0,+∞)上函數(shù)$f(x)=\left\{\begin{array}{l}{({\frac{3}{4}})^x},x<1\\ 3-\frac{9}{4}x,x≥1\end{array}\right.$,則$f({-\frac{3}{2}})$與$f({{a^2}+2a+\frac{5}{2}})$的大小關(guān)系是( 。
A.$f({-\frac{3}{2}})>f({{a^2}+2a+\frac{5}{2}})$B.$f({-\frac{3}{2}})<f({{a^2}+2a+\frac{5}{2}})$C.$f({-\frac{3}{2}})≥f({{a^2}+2a+\frac{5}{2}})$D.$f({-\frac{3}{2}})≤f({{a^2}+2a+\frac{5}{2}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)集合A={(x,y)|y=x2+2bx+1},B={(x,y)|y=2a(x+b)},且A∩B是單元素集合,若存在a<0,b<0使點(diǎn)P∈{(x,y)|(x-a)2+(y-b)2≤1},則點(diǎn)P所在的區(qū)域的面積為2π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.一個頻率分布表(樣本容量為30)不小心被損壞了一部分,只記得樣本中數(shù)據(jù)在[20,60)上的頻率為0.8,則估計樣本在[40,60)內(nèi)的數(shù)據(jù)個數(shù)為( 。
A.14B.15C.16D.17

查看答案和解析>>

同步練習(xí)冊答案