精英家教網 > 高中數學 > 題目詳情
下列命題中,正確的是(   )
A.球面上的四個不同點,一定不在同一平面內
B.球面上兩點的球面距離,是連結這兩點的線段的長
C.球面上兩點的球面距離,是過這兩點的大圓弧長
D.用不過球心的平面截球,球心和截面圓心的連線垂直于截面
D
A.球面上四個不同的點,可能在同一圓上,B、C.球面上兩點間的距離是過這兩點的大圓被兩點分成的劣弧的長.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

如圖,在正方體中,分別是棱、的中點.
試畫出平面與平面的交線.
 

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

下面的集合中三個元素不可能分別是長方體(一只“盒子”) 的三條外對角線的長度(一條外對角線就是這盒子的一個矩形面的一條對角線) 是(     )
A..B..C..D..

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

集合A={斜棱柱},B={直棱柱},C={正棱柱},D={長方體},下面命題中正確的是(   )
A.CBDB.A∪C={棱柱}
C.C∩D={正棱柱}D.BD

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

有下列四個命題:
①圓臺的任意兩條母線的延長線,可能相交,也可能不相交;②圓錐的母線都交于一點;③圓柱的母線都互相平行.其中正確的命題有____________.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,P是邊長為3的正方形ABCD所在平面外的一點,PD⊥平面ABCD,O、E、F分別是AC、PA、PB的中點.求證:平面EFO∥ 平面PDC;

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖(1),△BCD內接于直角梯形A1A2A3D,已知沿△BCD三邊將△A1BD、△A2BC、△A3CD翻折上去,恰好形成一個三棱錐ABCD,如圖(2)所示.

(1)求證:在三棱錐ABCD中,ABCD
(2)若直角梯形的上底A1D=10,高A1A2=8,求翻折后三棱錐的側面ACD與底面BCD所成二面角θ的余弦值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖所示,在四棱錐P—ABCD中,底面為直角梯形,AD∥BC,∠BAD=90°,PA⊥底面ABCD,且PA=AD=AB=2BC,M、N分別為PC、PB的中點.
(1)求證:PB⊥DM;
(2)求BD與平面ADMN所成的角.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知平面α、β和直線a、b,若α∩β=l,αα,bβ,且平面α與平面β不垂直,直線a與直線l不垂直,直線b與直線l不垂直,則(    )
A.直線a與直線b可能垂直,但不可能平行
B.直線a與直線b可能垂直,也可能平行
C.直線a與直線b不可能垂直,但可能平行
D.直線a與直線b不可能垂直,也不可能平行

查看答案和解析>>

同步練習冊答案