不等式(
1
2
)3x-1≤2
,則該不等式的解集為
 
考點(diǎn):指、對數(shù)不等式的解法
專題:不等式的解法及應(yīng)用
分析:由不等式(
1
2
)3x-1≤2
=(
1
2
)
-1
,可得3x-1≥-1,由此解得不等式的解集.
解答: 解:∵不等式(
1
2
)3x-1≤2
=(
1
2
)
-1
,
∴3x-1≥-1,
解得x≥0,
故答案為:[0,+∞).
點(diǎn)評:本題主要考查指數(shù)不等式的解法,指數(shù)函數(shù)的單調(diào)性,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定義在D上的函數(shù)f(x),如果滿足:對任意x∈D,存在常數(shù)M>0,都有|f(x)|≤M成立,則稱f(x)是D上的有界函數(shù),其中M稱為函數(shù)f(x)的上界.已知函數(shù)f(x)=1+a•(
1
2
x+(
1
4
x
(1)當(dāng)a=1,求函數(shù)f(x)在(-∞,0)上的值域,并判斷函數(shù)f(x)在(-∞,0)上是否為有界函數(shù),請說明理由;
(2)若函數(shù)f(x)在[0,+∞)上是以3為上界的有界函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x) 是定義在R上的奇函數(shù),且當(dāng)x>0時,f(x)=sinx-lgx,則f(x)的零點(diǎn)個數(shù)為( 。
A、7B、6C、5D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)
a
=(cosα,sinα)
,
b
=(cosβ,sinβ)
,若
a
-
b
=(-
12
13
5
13
)
,θ為
a
b
的夾角,
(Ⅰ)求θ的值;
(Ⅱ)若f(x)=2sin(θ-x)cos(θ-x)+2
3
sin2(θ-x)
,求f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sinβ=
3
5
(
π
2
<β<π)
,且sin(α+β)=cosα,則tan(α+β)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn) A(2,-3),B(-3,-2),若直線l:y=k(x-1)+1與線段AB相交,則直線l的斜率的范圍是( 。
A、k≥
3
4
或k≤-4
B、-4≤k≤
3
4
C、k<-
1
5
D、-
3
4
≤k≤4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{bn}滿足b1=1,且bn=2bn-1+3,
(Ⅰ)證明數(shù)列{bn+3}是等比數(shù)列并求數(shù)列{bn}的通項公式;
(Ⅱ)設(shè)數(shù)列{an}是首項a1=1,公差d=2的等差數(shù)列,若cn=
an
bn+3
,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某研究機(jī)構(gòu)準(zhǔn)備舉行一次數(shù)學(xué)新課程研討會,共邀請10名一線教師參加,使用不同版本教材的教師人數(shù)如表所示:
版本 人教A版 人教B版 蘇教版 北師大版
人數(shù) 4 3 1 2
(1)從這10名教師中隨機(jī)選出2名,求兩人所使用版本相同的概率;
(2)若隨機(jī)選出2名使用人教版的教師發(fā)言,設(shè)使用人教A版的教師人數(shù)為ξ,求隨機(jī)變量ξ的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在每年的“春運(yùn)”期間,某火車站經(jīng)統(tǒng)計每天的候車人數(shù)y(萬人)與時間t(小時),近似滿足函數(shù)關(guān)系式y(tǒng)=6sin(ωt+φ)+10,ω>0,|φ|<π,t∈[0,24],并且一天中候車人數(shù)最少是夜晚2點(diǎn)鐘,最多是在下午14點(diǎn)鐘.
(1)求函數(shù)關(guān)系式?
(2)當(dāng)候車人數(shù)達(dá)到13萬人以上時,車站將進(jìn)入緊急狀態(tài),需要增加工作人員應(yīng)對.問在一天中的什么時間段內(nèi),車站將進(jìn)入緊急狀態(tài)?

查看答案和解析>>

同步練習(xí)冊答案