17.已知函數(shù)f(x)=loga(x+1),函數(shù)g(x)=loga(4-2x)(a>0,且a≠1).
(1)求函數(shù)y=f(x)-g(x)的定義域;
(2)求使函數(shù)y=f(x)-g(x)的值為正數(shù)的x的取值范圍.

分析 (1)根據(jù)對數(shù)的真數(shù)要大于0,寫出滿足函數(shù)有意義的不等式組求解即可.
(2)將等式轉(zhuǎn)化為不等式問題求解.

解答 解:(1)由題意可知,函數(shù)f(x)=loga(x+1),函數(shù)g(x)=loga(4-2x)(a>0,且a≠1).
那么:函數(shù)y=f(x)-g(x)=loga(x+1)-loga(4-2x)
定義域滿足:$\left\{\begin{array}{l}{x+1>0}\\{4-2x>0}\end{array}\right.$,
解得:-1<x<2.
∴函數(shù)y=f(x)-g(x)的定義域是(-1,2).
(2)函數(shù)y=f(x)-g(x)的值為正數(shù),即f(x)>g(x)
可得:loga(x+1)>loga(4-2x)
當a>1時,可得:x+1>4-2x,
解得:x>1.
又∵定義域:-1<x<2.
∴解集為(1,2)
當0<a<1時,可得:x+1<4-2x,
解得:x<1.
又∵定義域:-1<x<2.
∴解集為(-1,1)
綜上所述:當a>1時,x的取值范圍是(1,2);
當0<a<1時,x的取值范圍是(-1,1).

點評 本題考查了對數(shù)函數(shù)的定義域的求法和對底數(shù)a的討論求解不等式的問題.屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

7.全集U=R,A⊆U,B⊆R,集合A={x∈N|1≤x≤10},集合B={x|x2+x-6=0},則圖中陰影部分表示的集合為( 。
A.{2}B.{-3}C.{-3,2}D.{-2,3}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.在△ABC中,設(shè)$\frac{a}{c}$=$\sqrt{3$-1,$\frac{tanB}{tanC}$=$\frac{2a-c}{c}$,求角A,B,C.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.若f(2x-1)=4x-1,則f(x)=( 。
A.f(x)=x2+2x,x∈(-1,+∞)B.f(x)=x2-1,x∈(-1,+∞)
C.f(x)=x2+2x,x∈(-∞,-1)D.f(x)=x2-1,x∈(-∞,-1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.下列四個關(guān)系式中,正確的是(  )
A.∅∈{a}B.a∉{a,b}C.b⊆{a,b}D.{a}⊆{a,b}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.若定義在R上的偶函數(shù)y=f(x)在(-∞,-1]上是增函數(shù),則下列各式成立的是(  )
A.f($\sqrt{2}$)>f(-$\sqrt{2}$)B.f(-2)>f(3)C.f(3)<f(4)D.f($\sqrt{2}$)>f($\sqrt{3}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.意大利著名數(shù)學家斐波那契在研究兔子繁殖問題時,發(fā)現(xiàn)有這樣一列數(shù):1,1,2,3,5,8,13,…,其中從第三個數(shù)起,每一個數(shù)都等于它前面兩個數(shù)的和,人們把這樣的一列數(shù)所組成的數(shù)列{an}稱為“斐波那契數(shù)列”,該數(shù)列是一個非常美麗、和諧的數(shù)列,有很多奇妙的屬性,比如:隨著項數(shù)的增加,前一項與后一項的比值越逼近黃金分割.06180339887.若把該數(shù)列{an}的每一項除以4所得的余數(shù)按相對應的順序組成新數(shù)列{bn},在數(shù)列{bn}中第2016項的值是0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.△ABC中,角A,B,C的對邊分別為a,b,c,若$\frac{cosA}{cosB}$=$\frac{a}$=$\sqrt{2}$,則該三角形的形狀是( 。
A.直角三角形B.等腰三角形C.等腰直角三角形D.等邊三角形

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知函數(shù)f(x)=ax2-bx+lnx,a,b∈R.
(1)當a=b=1時,求曲線y=f(x)在x=1處的切線方程;
(2)當b=2a+1時,討論函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

同步練習冊答案