定義運(yùn)算r:r(xn)=nxn-1,r(c)=0,r(cx)=cr(x)(c為常數(shù)),r(x+y)=r(x)+r(y),若3x2•f(x)+x3•r[f(x)]=5x4+2x3-3x2,f(x)為多項(xiàng)式函數(shù),則f(x)=
 
考點(diǎn):函數(shù)與方程的綜合運(yùn)用,函數(shù)解析式的求解及常用方法
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:分析定義可知滿足導(dǎo)數(shù)的運(yùn)算法則,通過求解原函數(shù),利用多項(xiàng)式半徑系數(shù)求出函數(shù)的解析式.
解答: 解:由r(xn)=nxn-1,r(c)=0,r(cx)=cr(x)(c為常數(shù)),以及3x2•f(x)+x3•r[f(x)]=5x4+2x3-3x2,可得:[x3f(x)]′=5x4+2x3-3x2,可得x3f(x)=x5+
1
2
x4-x3+c.又f(x)為多項(xiàng)式函數(shù),
∴f(x)=x2+
1
2
x-1.
故答案為:x2+
1
2
x-1.
點(diǎn)評:本題考查函數(shù)的應(yīng)用函數(shù)與方程的思想,考查分析問題解決問題的能力,通過題意觀察出導(dǎo)數(shù)的運(yùn)算法則是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)是偶函數(shù),且當(dāng)x∈[0,+∞)時,f(x)=x-1,則不等式f(x2-1)<0的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

比值
logaN
logaMN
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面α⊥平面β,α∩β=l,點(diǎn)A∈α,A∉l,直線AB∥l,直線AC⊥l,直線m∥α,m∥β,則下列四種位置關(guān)系中,不一定成立的是( 。
A、AB∥mB、AC⊥m
C、AC⊥βD、AB∥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2-
1
2
x+c(a、c∈R),滿足f(1)=0,且f(x)≥0在x∈R時恒成立.
(1)求a、c的值;
(2)若h(x)=
3
4
x2-bx+
b
2
-
1
4
,解不等式f(x)+h(x)<0;
(3)是否存在實(shí)數(shù)m,使函數(shù)g(x)=f(x)-mx在區(qū)間[m,m+2]上有最小值-5?若存在,請求出m的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足a1=
1
2
,an=-2Sn•Sn-1 (n≥2且n∈N*).
(Ⅰ)求證:數(shù)列{
1
Sn
}是等差數(shù)列;   
(Ⅱ)求Sn和an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sin
x
2
cos
x
2
+
3
cosx.
(1)求f(x)的最小正周期;
(2)若將f(x)的圖象向右平移
π
6
個單位,得到函數(shù)g(x)的圖象,并求出關(guān)于x的方程g(x)=1∈,當(dāng)x[0,π]時的根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a、b、c分別為內(nèi)角A、B、C的對邊,已知a=
2
bsin(C+
π
4
).
(1)若△ABC的外接圓半徑R=2
2
,求b;
(2)若△ABC的面積為
2
,求b的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=lg(x-1)+
1
2-x
的定義域是
 

查看答案和解析>>

同步練習(xí)冊答案