1.y=f(x)是定義在f(x)上的偶函數(shù)且在[0,+∞)上遞增,不等式f(x+1)<f(-$\frac{1}{2}}$)的解集為$({-\frac{3}{2},\frac{1}{2}})$.

分析 利用函數(shù)的奇偶性可把不等式轉(zhuǎn)化到區(qū)間[0,+∞)上,再由單調(diào)性可去掉不等式中的符號(hào)“f”,從而化為具體不等式解決.

解答 解:因?yàn)閒(x)為R上的偶函數(shù),所以f(x+1)<f(-$\frac{1}{2}}$)?f(|x+1|)<f($\frac{1}{2}}$),
又f(x)在[0,+∞)上遞增,所以|x+1|<$\frac{1}{2}$.
解得x∈$({-\frac{3}{2},\frac{1}{2}})$.
故答案為$({-\frac{3}{2},\frac{1}{2}})$.

點(diǎn)評(píng) 本題考查函數(shù)奇偶性、單調(diào)性的綜合應(yīng)用及抽象不等式的求解,解決本題的關(guān)鍵是利用函數(shù)性質(zhì)化抽象不等式為具體不等式處理.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.在[0°,360°)與-496°終邊相同的角是224°,它是第三象限角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.設(shè)曲線y=x+1與縱軸及直線y=2所圍成的封閉圖形為區(qū)域D,不等式組$\left\{\begin{array}{l}-1≤x≤1\\ 0≤y≤2\end{array}\right.$所確定的區(qū)域?yàn)镋,在區(qū)域E內(nèi)隨機(jī)取一點(diǎn),該點(diǎn)恰好在區(qū)域D的概率為( 。
A.$\frac{1}{2}$B.$\frac{1}{4}$
C.$\frac{1}{8}$D.以上答案均不正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.將函數(shù)f(x)=$\sqrt{3}$sin($\frac{π}{2}$+πx)圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),再把圖象上所有的點(diǎn)向右平移1個(gè)單位,得到函數(shù)g(x)的圖象,則函數(shù)g(x)的單調(diào)遞減區(qū)間是( 。
A.[2k-1,2k+2](k∈Z)B.[2k+1,2k+3](k∈Z)C.[4k+1,4k+3](k∈Z)D.[4k+2,4k+4](k∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.某企業(yè)共有20條生產(chǎn)線,由于受生產(chǎn)能力和技術(shù)水平等因素的影響,會(huì)產(chǎn)生一定量的次品.根據(jù)經(jīng)驗(yàn)知道,每臺(tái)機(jī)器產(chǎn)生的次品數(shù)p萬(wàn)件與每臺(tái)機(jī)器的日產(chǎn)量x萬(wàn)件(4≤x≤12)之間滿足關(guān)系:p=0.1125x2-3.6lnx+1.已知每生產(chǎn)1萬(wàn)件合格的產(chǎn)品可以以盈利3萬(wàn)元,但每生產(chǎn)1萬(wàn)件次品將虧損1萬(wàn)元.
(Ⅰ)試將該企業(yè)每天生產(chǎn)這種產(chǎn)品所獲得的利潤(rùn)y表示為x的函數(shù);
(Ⅱ)當(dāng)每臺(tái)機(jī)器的日產(chǎn)量為多少時(shí),該企業(yè)的利潤(rùn)最大,最大為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知m>5,則($\root{3}{6-m}$)3+$\root{4}{(5-m)^{4}}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.設(shè)f:A→B是集合A到集合B的映射,其中A={實(shí)數(shù)},B=R,f:x→x2-2x-1,求A中元素1+$\sqrt{2}$的像和B中元素-1的原像.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知f(x)=x2+ax+$\frac{{{a^2}+b-1}}{a}$.
(1)若b=-2,對(duì)任意的x∈[-2,2],都有f(x)<0成立,求實(shí)數(shù)a的取值范圍;
(2)設(shè)a≤-2,若任意x∈[-1,1],使得f(x)≤0成立,求a2+b2-8a的最小值,當(dāng)取得最小值時(shí),求實(shí)數(shù)a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.若“x2-2x-8<0”是“x<m”的充分不必要條件,則m的取值范圍是( 。
A.m>4B.m≥4C.m>-2D.-2<m<4

查看答案和解析>>

同步練習(xí)冊(cè)答案