【題目】下列說(shuō)法正確的是(
A.a∈R,“ <1”是“a>1”的必要不充分條件
B.“p∧q為真命題”是“p∨q為真命題”的必要不充分條件
C.命題“?x∈R使得x2+2x+3<0”的否定是:“?x∈R,x2+2x+3>0”
D.命題p:“?x∈R,sinx+cosx≤ ”,則¬p是真命題

【答案】A
【解析】解:A.由 <1得a>1或a<0,則“ <1”是“a>1”的必要不充分條件,正確,
B.若p∧q為真命題,則p,q都是真命題,此時(shí)p∨q為真命題,即充分性成立,反之當(dāng)p假q真時(shí),p∨q為真命題,
但p∧q為假命題,故“p∧q為真命題”是“p∨q為真命題”的充分不必要條件,故B錯(cuò)誤,
C.命題“x∈R使得x2+2x+3<0”的否定是:“x∈R,x2+2x+3≥0”,故C錯(cuò)誤,
D.∵sinx+cosx= sin(x+ )≤ 恒成立,∴p是真命題,則¬p是假命題,故D錯(cuò)誤,
故選:A.
【考點(diǎn)精析】掌握命題的真假判斷與應(yīng)用是解答本題的根本,需要知道兩個(gè)命題互為逆否命題,它們有相同的真假性;兩個(gè)命題為互逆命題或互否命題,它們的真假性沒(méi)有關(guān)系.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某城市有一塊半徑為40m的半圓形綠化區(qū)域(以O(shè)為圓心,AB為直徑),現(xiàn)對(duì)其進(jìn)行改建,在AB的延長(zhǎng)線上取點(diǎn)D,OD=80m,在半圓上選定一點(diǎn)C,改建后綠化區(qū)域由扇形區(qū)域AOC和三角形區(qū)域COD組成,其面積為Scm2 . 設(shè)∠AOC=xrad.

(1)寫(xiě)出S關(guān)于x的函數(shù)關(guān)系式S(x),并指出x的取值范圍;
(2)試問(wèn)∠AOC多大時(shí),改建后的綠化區(qū)域面積S取得最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,點(diǎn)邊上,,,

(1)求的值;

(2)若的面積是,求的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】程大位是明代著名數(shù)學(xué)家,他的《新編直指算法統(tǒng)宗》是中國(guó)歷史上一部影響巨大的著作,它問(wèn)世后不久便風(fēng)行宇內(nèi),成為明清之際研習(xí)數(shù)學(xué)者必讀的教材,而且傳到朝鮮、日本及東南亞地區(qū),對(duì)推動(dòng)漢字文化圈的數(shù)學(xué)發(fā)展起了重要的作用.卷八中第33問(wèn)是:“今有三角果一垛,底闊每面七個(gè),問(wèn)該若干?”如圖是解決該問(wèn)題的程序框圖,執(zhí)行該程序框圖,求得該垛果子的總數(shù)為( )

A. 120 B. 84 C. 56 D. 28

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,橢圓 )的離心率為,左焦點(diǎn)為,右焦點(diǎn)為,短軸兩個(gè)端點(diǎn)、,與軸不垂直的直線與橢圓交于不同的兩點(diǎn)、,記直線、的斜率分別為、,且.

1)求橢圓的方程;

2)求證直線軸相交于定點(diǎn),并求出定點(diǎn)坐標(biāo);

3)當(dāng)弦的中點(diǎn)落在內(nèi)(包括邊界)時(shí),求直線的斜率的取值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分分)

已知圓,過(guò)點(diǎn)作直線交圓、兩點(diǎn).

)當(dāng)經(jīng)過(guò)圓心時(shí),求直線的方程.

)當(dāng)直線的傾斜角為時(shí),求弦的長(zhǎng).

)求直線被圓截得的弦長(zhǎng)時(shí),求以線段為直徑的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)y=ex﹣mx在區(qū)間(0,3]上有兩個(gè)零點(diǎn),則m的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將函數(shù)f(x)= sin(2x﹣ )+1的圖象向左平移 個(gè)單位長(zhǎng)度,再向下平移1個(gè)單位長(zhǎng)度,得到函數(shù)g(x)的圖象,則函數(shù)g(x)具有性質(zhì) . (填入所有正確性質(zhì)的序號(hào))
①最大值為 ,圖象關(guān)于直線x= 對(duì)稱;
②在(﹣ ,0)上單調(diào)遞增,且為偶函數(shù);
③最小正周期為π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,已知圓圓心為,過(guò)點(diǎn)且斜率為的直線與圓相交于不同的兩點(diǎn)、

)求的取值范圍

)是否存在常數(shù),使得向量共線?如果存在,求值;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案