【題目】如圖所示,橢圓: ()的離心率為,左焦點為,右焦點為,短軸兩個端點、,與軸不垂直的直線與橢圓交于不同的兩點、,記直線、的斜率分別為、,且.
(1)求橢圓的方程;
(2)求證直線與軸相交于定點,并求出定點坐標;
(3)當弦的中點落在內(包括邊界)時,求直線的斜率的取值.
【答案】(1)(2)(3)或
【解析】試題分析:(1)由焦點坐標可得c值,由離心率可得a值,據a,b,c關系可求得b;(2)設直線l的方程為y=kx+b,M、N坐標分別為 M(x1,y1),N(x2,y2),聯立直線方程與橢圓方程消掉y得x的二次方程,由韋達定理及斜率公式可用k,b表示出等式,由此可求得b值,進而可求得直線所過定點;(3)由(2)中的一元二次方程可求得判別式大于0求得k的范圍,設弦AB的中點P坐標則可分別表示出x0和y0,易判斷p點在x軸上方,從而得一關于x0,y0的不等式組,將坐標代入,解出即可;
解析:
(1)由題意可知:橢圓的離心率, ∴,
故橢圓的方程為
(2)設直線的方程為, , 坐標分別為,
由得
.
∴, ,
∴, 。
∴=
將韋達定理代入,并整理得
,解得
.
∴直線與軸相交于定點;
(3)由(2)中,
其判別式,得.①
設弦的中點坐標為,則
,
∵弦的中點落在內(包括邊界),∴
將坐標代入,整理得
解得
由①②得所求范圍為或
科目:高中數學 來源: 題型:
【題目】已知下列命題:
①設為直線,為平面,且,則“”是“”的充要條件;
②若是的充分不必要條件,則是的必要不充分條件;;
③已知,為兩個命題,若“”為假命題,則“為真命題”
④若不等式恒成立,則的取值范圍是;
⑤若命題有,則有;
其中真命題的序號是____________(寫出全部真命題的序號).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某學生對其30位親屬的飲食習慣進行了一次調查,并用如圖所示的莖葉圖表示他們的飲食指數(說明:圖中飲食指數低于70的人,飲食以蔬菜為主;飲食指數高于70的人,飲食以肉類為主).
(1)根據莖葉圖,幫助這位同學說明這30位親屬的飲食習慣.
(2)根據以上數據完成如下2×2列聯表.
(3)能否有99%的把握認為其親屬的飲食習慣與年齡有關?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=(2﹣a)lnx+ +2ax(a∈R).
(Ⅰ)當a=0時,求f(x)的極值;
(Ⅱ)當a<0時,求f(x)單調區(qū)間;
(Ⅲ)若對任意a∈(﹣3,﹣2)及x1 , x2∈[1,3],恒有(m+ln3)a﹣2ln3>|f(x1)﹣f(x2)|成立,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列說法正確的是( )
A.a∈R,“ <1”是“a>1”的必要不充分條件
B.“p∧q為真命題”是“p∨q為真命題”的必要不充分條件
C.命題“?x∈R使得x2+2x+3<0”的否定是:“?x∈R,x2+2x+3>0”
D.命題p:“?x∈R,sinx+cosx≤ ”,則¬p是真命題
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}的前n項和Sn=kcn﹣k(其中c,k為常數),且a2=4,a6=8a3 .
(1)求an;
(2)求數列{nan}的前n項和Tn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,平面平面,四邊形為矩形, ,點為的中點.
(1)證明: 平面.
(2)點為上任意一點,在線段上是否存在點,使得?若存在,確定點的位置,并加以證明;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在直三棱柱ABC-A1B1C1中,已知AC⊥BC,BC=CC1,設AB1的中點為D,B1C∩BC1=E.
求證:(1)DE∥平面AA1C1C;
(2)BC1⊥AB1.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com