12.已知y=f(x+1)+2是定義域為R的奇函數(shù),則f(e)+f(2-e)=-4.

分析 y=f(x+1)+2的圖象關于原點(0,0)對稱,則 y=f(x)圖象關于(1,-2)對稱,即可求出f(e)+f(2-e).

解答 解:y=f(x+1)+2的圖象關于原點(0,0)對稱,
則y=f(x)是由y=f(x+1)+2的圖象向右平移1個單位、向下平移2個單位得到,圖象關于(1,-2)對稱,f(e)+f(2-e)=-4.
故答案為-4.

點評 本題考查函數(shù)的奇偶性、對稱性,考查學生的計算能力,比較基礎.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

2.如圖是一個算法的流程圖,則輸出的n的值為5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.$\frac{5π}{6}$B.$\frac{4π}{3}$C.$\frac{5π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知關于x的不等式|x-3|+|x-m|≥2m的解集為R.
(Ⅰ)求m的最大值;
(Ⅱ)已知a>0,b>0,c>0,且a+b+c=m,求4a2+9b2+c2的最小值及此時a,b,c的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.為了弘揚民族文化,某校舉行了“我愛國學,傳誦經(jīng)典”考試,并從中隨機抽取了100名考生的成績(得分均為整數(shù),滿分100分)進行統(tǒng)計制表,其中成績不低于80分的考生被評為優(yōu)秀生,請根據(jù)頻率分布表中所提供的數(shù)據(jù),用頻率估計概率,回答下列問題.
 分組 頻數(shù) 頻率
[50,60) 5 0.05
[60,70) a 0.20
[70,80) 35 b
[80,90) 25 0.25
[90,100) 15 0.15
 合計 100 1.00
( I)求a,b的值及隨機抽取一考生恰為優(yōu)秀生的概率;
(Ⅱ)按頻率分布表中的成績分組,采用分層抽樣抽取20人參加學校的“我愛國學”宣傳活動,求其中優(yōu)秀生的人數(shù);
(Ⅲ)在第(Ⅱ)問抽取的優(yōu)秀生中指派2名學生擔任負責人,求至少一人的成績在[90,100]的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.設集合A={-1,0,1,2},B={x|x-1<0},則A∩B=( 。
A.(-1,1)B.(-1,0)C.{-1,0,1}D.{-1,0}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.設函數(shù)f(x)在(m,n)上的導函數(shù)為g(x),x∈(m,n),g(x)若的導函數(shù)小于零恒成立,則稱函數(shù)f(x)在(m,n)上為“凸函數(shù)”.已知當a≤2時,$f(x)=\frac{1}{6}{x^2}-\frac{1}{2}a{x^2}+x$,在x∈(-1,2)上為“凸函數(shù)”,則函數(shù)f(x)在(-1,2)上結(jié)論正確的是( 。
A.既有極大值,也有極小值B.有極大值,沒有極小值
C.沒有極大值,有極小值D.既無極大值,也沒有極小值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知某幾何體的三視圖如圖所示,則該幾何體的體積是(  )
A.$\frac{2}{3}$B.$\frac{4}{3}$C.$\frac{8}{3}$D.$\frac{10}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知等差數(shù)列{an}前n項和為Sn,且${S_n}={n^2}+c$(n∈N*).
(Ⅰ) 求c,an;
(Ⅱ) 若${b_n}=\frac{a_n}{2^n}$,求數(shù)列{bn}前n項和Tn

查看答案和解析>>

同步練習冊答案