設(shè)函數(shù)的圖像與直線相切于點(diǎn).
(1)求的值;
(2)討論函數(shù)的單調(diào)性.
(1) (2)單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為,.

試題分析:(1)先求出,結(jié)合題中所給的切線與切點(diǎn)可得方程組,從而求解方程組即可得到的值;(2)由(1)中所求得的,確定,從而由,可求出函數(shù)的單調(diào)增區(qū)間,由,可求出函數(shù)的單調(diào)減區(qū)間.
試題解析:(1) 求導(dǎo)得,又因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042731986447.png" style="vertical-align:middle;" />的圖像與直線相切于點(diǎn)
所以有 即 解得
(2)由 
當(dāng)時,,的單調(diào)遞增區(qū)間為,
當(dāng)時,的單調(diào)遞減區(qū)間為.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù).
(1)當(dāng) 時,求處的切線方程;
(2)設(shè)函數(shù)
(。┤艉瘮(shù)有且僅有一個零點(diǎn)時,求的值;
(ⅱ)在(ⅰ)的條件下,若,,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù),,,
(1)若曲線軸相切于異于原點(diǎn)的一點(diǎn),且函數(shù)的極小值為,求的值;
(2)若,且,
①求證:; ②求證:上存在極值點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)是偶函數(shù),且處的切線方程為,則常數(shù)的積等于(    )
A.1
B.2
C.-3
D.-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若曲線在點(diǎn)處的切線與兩坐標(biāo)軸圍成三角形的面積為,則________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù)y=lnx-ax的圖像在x=1處的切線與直線2x+y-1=0平行,則實(shí)數(shù)a的值為_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若曲線y=x2+ax+b在點(diǎn)(0,b)處的切線方程是xy+1=0,則(    )
A.a(chǎn)=1,b=1B.a(chǎn)=1,b=1C.a(chǎn)=1,b=1D.a(chǎn)=1,b=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)函數(shù)f(x)=ax3bx2cx(c<0),其圖象在點(diǎn)A(1,0)處的切線的斜率為0,則f(x)的單調(diào)遞增區(qū)間是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù)f(x)=x3+f′x2-x,則函數(shù)f(x)的圖象在處的切線方程是       

查看答案和解析>>

同步練習(xí)冊答案