規(guī)定其中為正整數(shù),且=1,這是排列數(shù)(是正整數(shù),)的一種推廣.
(Ⅰ) 求的值;
(Ⅱ)排列數(shù)的兩個性質(zhì):①,②(其中m,n是正整數(shù)).是否都能推廣到(,是正整數(shù))的情形?若能推廣,寫出推廣的形式并給予證明;若不能,則說明理由;
(Ⅲ)已知函數(shù),試討論函數(shù)的零點個數(shù).

(1)-990
(2)①,②()
(3)當(dāng)時,函數(shù)不存在零點,
當(dāng)時,函數(shù)有且只有一個零點,
當(dāng)時,即函數(shù)有且只有兩個零點.

解析試題分析:解:(Ⅰ)
(Ⅱ)性質(zhì)①、②均可推廣,推廣的形式分別是①,②()
證明:①當(dāng)時,左邊,右邊,等式成立;
當(dāng)時,左邊

因此,()成立.
②當(dāng)時,左邊右邊,等式成立;
當(dāng)時,左邊



=右邊
因此,()成立.
(Ⅲ)
設(shè)函數(shù),
則函數(shù)零點的個數(shù)等價于函數(shù)公共點的個數(shù).
的定義域為

,得






-
0
+




∴當(dāng)時,函數(shù)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)是否存在點,使得函數(shù)的圖像上任意一點P關(guān)于點M對稱的點Q也在函數(shù)的圖像上?若存在,求出點M的坐標(biāo);若不存在,請說明理由;
(2)定義,其中,求
(3)在(2)的條件下,令,若不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),點為一定點,直線分別與函數(shù)的圖象和軸交于點,,記的面積為.
(I)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(II)當(dāng)時, 若,使得, 求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

函數(shù)
(1)當(dāng)時,對任意R,存在R,使,求實數(shù)的取值范圍;
(2)若對任意恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(Ⅰ)設(shè),求的單調(diào)區(qū)間;
(Ⅱ) 設(shè),且對于任意.試比較的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)(其中).
(Ⅰ) 當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(Ⅱ) 當(dāng)時,求函數(shù)上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=-ln(x+m).
(Ι)設(shè)x=0是f(x)的極值點,求m,并討論f(x)的單調(diào)性;
(Ⅱ)當(dāng)m≤2時,證明f(x)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),
⑴求函數(shù)的單調(diào)區(qū)間;
⑵記函數(shù),當(dāng)時,上有且只有一個極值點,求實數(shù)的取值范圍;
⑶記函數(shù),證明:存在一條過原點的直線的圖象有兩個切點

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某商場銷售某種商品的經(jīng)驗表明,該商品每日的銷售量y(單位:千克)與銷售價格x(單位:元/千克)滿足關(guān)系式,其中3<x<6,a 為常數(shù),已知銷售價格為5元/千克時,每日可售出該商品11千克。
(I)求a的值
(II)若該商品的成品為3元/千克,試確定銷售價格x的值,使商場每日銷售該商品所獲得的利潤最大。

查看答案和解析>>

同步練習(xí)冊答案