9.不等式組$\left\{\begin{array}{l}-1≤x≤1\\ 0≤y≤2\end{array}\right.$表示的點(diǎn)集M,不等式組$\left\{\begin{array}{l}{x-y+1≥0}\\{y≥2{x}^{2}}\end{array}\right.$表示的點(diǎn)集記為N,在M中任取一點(diǎn)P,則P∈N的概率為( 。
A.$\frac{5}{32}$B.$\frac{9}{32}$C.$\frac{9}{16}$D.$\frac{5}{16}$

分析 求出面積,利用幾何概型的公式解答.

解答 解:不等式組$\left\{\begin{array}{l}-1≤x≤1\\ 0≤y≤2\end{array}\right.$表示的點(diǎn)集M,對應(yīng)的區(qū)域面積為2×2=4,N對應(yīng)的區(qū)域面積為${∫}_{-\frac{1}{2}}^{1}$(x+1-2x2)dx=($\frac{1}{2}$x2+x-$\frac{2}{3}$x3)|${|}_{-\frac{1}{2}}^{1}$=$\frac{9}{8}$,
由幾何概型公式得,在M中任取一點(diǎn)P,則P∈N的概率為$\frac{9}{32}$.
故選:B.

點(diǎn)評 本題考查了幾何概型的公式的運(yùn)用,關(guān)鍵是求出區(qū)域面積,利用幾何概型公式求值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若f(x)=sin3x+acos2x在(0,π)上存在最小值,則實數(shù)a的取值范圍是( 。
A.(0,$\frac{3}{2}$)B.(0,$\frac{3}{2}$]C.[$\frac{3}{2}$,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,正三棱柱ABC-A1B1C1的所有棱長均為2,D為棱BB1上一點(diǎn),E是AB的中點(diǎn).
(1)若D是BB1的中點(diǎn),證明:平面ADC1⊥平面A1EC;
(2)若平面ADC1與平面ABC的夾角為45°,求BD的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,在直四棱柱ABCD-A1B1C1D1中,底面ABCD為等腰梯形,AB∥CD,AB=4,BC=CD=2,AA1=2,E、F、G分別是棱A1B1、AB、A1D1的中點(diǎn).
(Ⅰ)求證:GE⊥平面FCC1;
(Ⅱ)求二面角B-FC1-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖所示的三棱柱中,側(cè)面ABB1A1為邊長等于2的菱形,且∠AA1B1=60°,△ABC為等邊三角形,面ABC⊥面ABB1A1
(1)求證:A1B1⊥AC1;
(2)求側(cè)面A1ACC1和側(cè)面BCC1B1所成的二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.《九章算術(shù)》中,將底面是直角三角形的直三棱柱稱之為“塹堵”,已知某“塹堵”的三視圖如圖所示,則該“塹堵”的表面積為(  )
A.2B.4C.4+4$\sqrt{2}$D.6+4$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知數(shù)列{an}滿足a1=1,anan+1=2n,n∈N.
(1)若函數(shù)f(x)=Asin(2x+ϕ)(A>0,0<ϕ<π)在x=$\frac{π}{6}$處取得最大值a4+1,求函數(shù)f(x)在區(qū)間$[-\frac{π}{12},\frac{π}{2}]$上的值域.
(2)求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若一個棱長為2的正方體的各個頂點(diǎn)均在同一球的球面上,則此球的表面積為12π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知半徑為$2\sqrt{3}$的球內(nèi)有一內(nèi)接正方體,若在球內(nèi)任取一點(diǎn),則該點(diǎn)在正方體內(nèi)的概率為$\frac{2\sqrt{3}}{3π}$.

查看答案和解析>>

同步練習(xí)冊答案