3.下列四個(gè)函數(shù)中,在區(qū)間(0,1)上是減函數(shù)的是( 。
A.y=log2xB.$y=\frac{1}{x}$C.y=2xD.$y={x^{\frac{2}{3}}}$

分析 根據(jù)題意,依次分析選項(xiàng):對(duì)于A、由對(duì)數(shù)函數(shù)的性質(zhì)分析可得其在區(qū)間(0,+∞)上為增函數(shù),對(duì)于B、由反比例函數(shù)的性質(zhì)分析可得其在區(qū)間(0,+∞)上為減函數(shù),對(duì)于C、由指數(shù)函數(shù)的性質(zhì)分析可得其在區(qū)間(0,+∞)上為增函數(shù),對(duì)于D、由冪函數(shù)的性質(zhì)分析可得其在區(qū)間(0,+∞)上為增函數(shù),綜合即可得答案.

解答 解:根據(jù)題意,依次分析選項(xiàng):
對(duì)于A、函數(shù)y=log2x為對(duì)數(shù)函數(shù),底數(shù)a=2>1,在區(qū)間(0,+∞)上為增函數(shù),不合題意;
對(duì)于B、函數(shù)y=$\frac{1}{x}$為反比例函數(shù),在區(qū)間(0,+∞)上為減函數(shù),符合題意;
對(duì)于C、函數(shù)y=2x為指數(shù)函數(shù),底數(shù)a=2>1,在區(qū)間(0,+∞)上為增函數(shù),不合題意;
對(duì)于D、函數(shù)y=${x}^{\frac{2}{3}}$為冪函數(shù),指數(shù)α=$\frac{2}{3}$>0,在區(qū)間(0,+∞)上為增函數(shù),不合題意;
故選:B.

點(diǎn)評(píng) 本題考查函數(shù)的單調(diào)性的判斷,關(guān)鍵是熟悉常見函數(shù)的單調(diào)性.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.在平面直角坐標(biāo)系中,方程x2+y2=1所對(duì)應(yīng)的圖象經(jīng)過伸縮變換$\left\{\begin{array}{l}x'=5x\\ y'=3y\end{array}\right.$后的圖象所對(duì)應(yīng)的方程為$\frac{x^2}{25}+\frac{y^2}{9}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.小五、小一、小節(jié)、小快、小樂五位同學(xué)站成一排,若小一不出現(xiàn)在首位和末位,小五、小節(jié)、小樂中有且僅有兩人相鄰,求能滿足條件的不同排法共有多少種?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知$f(x)={x^{-2{m^2}+m+3}}(m∈{Z})$是定義在(-∞,+∞)上的偶函數(shù),且在(-∞,0]上是增函數(shù),設(shè)a=f(log47),$b=f({{{log}_{\frac{1}{2}}}3})$,c=f(21,6),則a,b,c的大小關(guān)系是( 。
A.c<a<bB.c<b<aC.b<c<aD.a<c<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)計(jì)如圖的程序框圖,統(tǒng)計(jì)高三某班59位同學(xué)的數(shù)學(xué)平均分,輸出不少于平均分的人數(shù) (用j表示),則判斷框中應(yīng)填入的條件是(  )
A.i<58?B.i≤58?C.j<59?D.j≤59?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.上周某校高三年級(jí)學(xué)生參加了數(shù)學(xué)測(cè)試,年部組織任課教師對(duì)這次考試進(jìn)行成績(jī)分析.現(xiàn)從中隨機(jī)選取了40名學(xué)生的成績(jī)作為樣本,已知這40名學(xué)生的成績(jī)?nèi)吭?0分至100分之間,現(xiàn)將成績(jī)按如下方式分成6組:第一組[40,50);第二組[50,60);…;第六組[90,100],并據(jù)此繪制了如圖所示的頻率分布直方圖.
(Ⅰ)估計(jì)這次月考數(shù)學(xué)成績(jī)的平均分和眾數(shù);
(Ⅱ)從成績(jī)大于等于80分的學(xué)生中隨機(jī)選2名,求至少有1名學(xué)生的成績(jī)?cè)趨^(qū)間[90,100]內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知Ω={(x,y)||x|≤1,|y|≤1},A是曲線y=x3與$y={x^{\frac{1}{2}}}$圍成的區(qū)域,若向區(qū)域Ω上隨機(jī)投一點(diǎn)P,則點(diǎn)P落入?yún)^(qū)域A的概率為$\frac{5}{48}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)a,b,c∈{1,2,3,4,5,6},若以a,b,c為三條邊的長(zhǎng)可以構(gòu)成一個(gè)等腰(含等邊)三角形,則這樣的三角形有27個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若a,b是正數(shù),直線2ax+by-2=0被圓x2+y2=4截得的弦長(zhǎng)為2$\sqrt{3}$,則t=a$\sqrt{1+2^{2}}$取得最大值時(shí)a的值為( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{3}}{4}$D.$\frac{3}{4}$

查看答案和解析>>

同步練習(xí)冊(cè)答案