記(1+3x)n的展開(kāi)式中各項(xiàng)系數(shù)和為an,各項(xiàng)的二項(xiàng)式系數(shù)和為bn,則
lim
n→∞
2bn-an
3bn+an
等于( 。
A、1B、0C、-1D、不存在
考點(diǎn):數(shù)列的極限
專題:二項(xiàng)式定理
分析:依題意,可知an=(1+3)n=4n,bn=2n;利用極限的性質(zhì)即可求得答案.
解答: 解:∵(1+3x)n的展開(kāi)式中各項(xiàng)系數(shù)和為an,
∴an=(1+3)n=4n
又bn為各項(xiàng)的二項(xiàng)式系數(shù)和,
∴bn=2n;
lim
n→∞
2bn-an
3bn+an
=
lim
n→∞
2•2n-4n
3•2n+4n
=
lim
n→∞
2•(
1
2
)n-1
3•(
1
2
)
n
+1
=-1,
故選:C.
點(diǎn)評(píng):本題考查數(shù)列的極限,著重考查二項(xiàng)式系數(shù)的性質(zhì),求得an=4n,bn=2n是關(guān)鍵,考查運(yùn)算能力與等價(jià)轉(zhuǎn)化思想,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等比數(shù)列{an}的各項(xiàng)均為正數(shù),且2a1+a2=15,a42=9a1a5
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式.
(Ⅱ)設(shè)bn=log3a1+log3a2+…+log3an,數(shù)列{
1
bn
}
的前n項(xiàng)和為Sn,若Sn
39
20
,試求n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=x2+ax+b,點(diǎn)(a,b)為函數(shù)y=
5-2x
x-2
的對(duì)稱中心,設(shè)數(shù)列{an},{bn}滿足4an+1=f(an)+2an+2(n∈N*),a1=6,且bn=
1
an+4
,{bn}的前n項(xiàng)和為Sn
(1)求a,b的值;
(2)求證:Sn
1
6
;
(3)求證:an+2≥2 2n-4+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列A:a1,a2,a3…,an(n≥3,n∈N*)中,令TA={x|x=ai•aj,1≤i<j≤n,i,j∈N*},cord(TA)表示集合TA中元素的個(gè)數(shù).(例如A:1,2,4,則cord(TA)=3.)若
ai+1
ai
=c(c為常數(shù),且|c|>1,1≤i≤n-1)則cord(TA)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=
|lnx|,x>0
ex,x≤0
(e為自然對(duì)數(shù)的底數(shù)),已知函數(shù)g(x)=f(x)-m有兩個(gè)零點(diǎn),則實(shí)數(shù)m的取值范圍為(  )
A、0<m<1B、0<m≤1
C、m>1D、m≥1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)(x,y)滿足約束條件
x+y-2≥0
3x-y-2≥0
x≤3
,則x2+y2的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
m
,
n
是夾角為120°的單位向量,向量
a
=t
m
+(1-t)
n
,若
n
a
,則實(shí)數(shù)t=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知不等式ax2-5x+b>0的解集為{x|x<-
1
3
或x>
1
2
},則不等式bx2-5x+a>0的解集為( 。
A、{x|-
1
3
<x<
1
2
}
B、{x|x<-
1
3
或x>
1
2
}
C、{x|-3<x<2}
D、{x|x<-3或x>2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若-9、a、-l成等差數(shù)列,-9、m、b、n、-1成等比數(shù)列,則ab=(  )
A、15B、-l5
C、±l5D、10

查看答案和解析>>

同步練習(xí)冊(cè)答案