17.根據(jù)下列條件,分別寫(xiě)出橢圓的標(biāo)準(zhǔn)方程:
(1)與橢圓$\frac{x^2}{9}+\frac{y^2}{4}=1$有公共焦點(diǎn),且過(guò)M(3,-2);
(2)中心在原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,且經(jīng)過(guò)兩點(diǎn)$A({\sqrt{3},-2})$和$B({-2\sqrt{3},1})$.

分析 (1)利用橢圓的定義求出a,可得b,即可求出橢圓的標(biāo)準(zhǔn)方程;
(2)利用待定系數(shù)法,求出橢圓的標(biāo)準(zhǔn)方程.

解答 解:(1)橢圓$\frac{x^2}{9}+\frac{y^2}{4}=1$的焦點(diǎn)坐標(biāo)為($±\sqrt{5}$,0),
∵橢圓過(guò)M(3,-2),
∴2a=$\sqrt{(3+\sqrt{5})^{2}+4}$+$\sqrt{(3-\sqrt{5})^{2}+4}$=2$\sqrt{15}$,
∴a=$\sqrt{15}$,b=$\sqrt{10}$,
∴橢圓的標(biāo)準(zhǔn)方程為$\frac{x^2}{15}+\frac{y^2}{10}=1$;
(2)設(shè)橢圓方程為mx2+ny2=1(m>0,n>0).
∵橢圓經(jīng)過(guò)兩點(diǎn)$A({\sqrt{3},-2})$和$B({-2\sqrt{3},1})$,
∴$\left\{\begin{array}{l}{3m+4n=1}\\{12m+n=1}\end{array}\right.$,∴m=$\frac{1}{15}$,n=$\frac{1}{5}$,
∴橢圓的標(biāo)準(zhǔn)方程為$\frac{x^2}{15}+\frac{y^2}{5}=1$.

點(diǎn)評(píng) 本題考查橢圓的方程與性質(zhì),考查橢圓的定義,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.當(dāng)x∈[0,5]時(shí),函數(shù)f(x)=3x2-4x+c的值域?yàn)椋ā 。?table class="qanwser">A.[f(0),f(5)]B.[f(0),f($\frac{2}{3}$)]C.[c,f(5)]D.[f$\frac{2}{3}$),f(5)]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.函數(shù)f(x)=x2+x-2a,若y=f(x)在區(qū)間(-1,1)內(nèi)有零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.求適合下列條件的圓錐曲線的標(biāo)準(zhǔn)方程:
(1)焦點(diǎn)坐標(biāo)為($\sqrt{2}$,0),準(zhǔn)線方程為x=$±2\sqrt{2}$的橢圓;
(2)過(guò)點(diǎn)($\sqrt{2}$,2),漸近線方程為y=±2x的雙曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.雙曲線$\frac{x^2}{8}-\frac{y^2}{6}=1$的漸近線方程為$y=±\frac{{\sqrt{3}}}{2}x$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.在△ABC中,三個(gè)內(nèi)角A,B,C的對(duì)邊分別是a,b,c,若b2+c2-a2=bc,則角A等于( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x+y≥0}\\{x-y+5≥0}\\{x≤3}\end{array}\right.$,則z=3x+4y的最小值為( 。
A.$\frac{5}{2}$B.-3C.10D.-10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.設(shè)等比數(shù)列{an}滿足a2=4,S2=6.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn=nan,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.四張背面完全相同的紙牌(如圖,用①、②、③、④表示),正面分別寫(xiě)有四個(gè)不同的條件.小明將這4張紙牌背面朝上洗勻后,先隨機(jī)抽出一張(不放回),再隨機(jī)抽出一張.
(1)寫(xiě)出兩次摸牌出現(xiàn)的所有可能的結(jié)果(用①、②、③、④表示);
(2)以兩次摸出的牌面上的結(jié)果為條件,求能判斷四邊形ABCD為平行四邊形的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案