12.若a,b為實(shí)數(shù),則“3a<3b”是“$\frac{1}{|a|}$>$\frac{1}{|b|}$”的( 。
A.充分不必要條件B.必要不充分條件
C.充分且必要條件D.既不充分也不必要條件

分析 根據(jù)題意,從兩個(gè)方面進(jìn)行分析,①、若“3a<3b”,則有a<b,“$\frac{1}{|a|}$>$\frac{1}{|b|}$”不一定成立,②若“$\frac{1}{|a|}$>$\frac{1}{|b|}$”,則有|a|<|b|,“3a<3b”不一定成立,結(jié)合充分、必要條件的定義分析可得答案.

解答 解:根據(jù)題意,若“3a<3b”,則有a<b,“$\frac{1}{|a|}$>$\frac{1}{|b|}$”不一定成立,如a=-3,b=1,
若“$\frac{1}{|a|}$>$\frac{1}{|b|}$”,則有|a|<|b|,“3a<3b”不一定成立,如a=1,b=-3,
故“3a<3b”是“$\frac{1}{|a|}$>$\frac{1}{|b|}$”的既不充分也不必要條件;
故選:D.

點(diǎn)評(píng) 本題考查充分、必要條件的判定,涉及不等式大小的比較,注意由“3a<3b”分析a、b的大小時(shí),可以借助指數(shù)函數(shù)的性質(zhì).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.平面直角坐標(biāo)系xOy中,已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的離心率為$\frac{1}{2}$,左、右焦點(diǎn)分別是F1,F(xiàn)2,以F1為圓心以3為半徑的圓與以F2為圓心以1為半徑的圓相交,且交點(diǎn)在橢圓C上.
(1)求橢圓C的方程;
(2)過橢圓C上一動(dòng)點(diǎn)P(x0,y0)(y0≠0)的直線l:$\frac{{x}_{0}x}{{a}^{2}}$+$\frac{{y}_{0}y}{^{2}}$=1,過F2與x軸垂直的直線記為l1,右準(zhǔn)線記為l2;
①設(shè)直線l與直線l1相交于點(diǎn)M,直線l與直線l2相交于點(diǎn)N,證明$\frac{M{F}_{2}}{N{F}_{2}}$恒為定值,并求此定值.
②若連接F1P并延長(zhǎng)與直線l2相交于點(diǎn)Q,橢圓C的右頂點(diǎn)A,設(shè)直線PA的斜率為k1,直線QA的斜率為k2,求k1•k2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知離心率為$\frac{1}{2}$ 的橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左頂點(diǎn)為A,右焦點(diǎn)為F,且|AF|=3.
(1)求橢圓C的方程;
(2)若過點(diǎn)F的直線交橢圓于B、C兩點(diǎn),設(shè)直線AB和AC分別與直線x=4交于點(diǎn)M,N,問x軸上是否存在定點(diǎn)P使得MP⊥NP?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知P(4,0)是圓x2+y2=36內(nèi)一點(diǎn),A,B是圓上兩動(dòng)點(diǎn),且滿足∠APB=90°,則矩形APBQ的頂點(diǎn)Q的軌跡是(  )
A.B.橢圓C.雙曲線D.拋物線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)y=x3+3ax2+3bx+c在x=2處有極值,且其圖象在x=1處切線斜率為-3
(1)求函數(shù)的單調(diào)區(qū)間;
(2)求函數(shù)的極大值與極小值的差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.函數(shù)y=sinx+$\sqrt{3}$cosx(x∈[0,$\frac{π}{2}}$])的單調(diào)遞增區(qū)間是[0,$\frac{π}{6}$],最小值是1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.如圖,曲線C1是橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1的一部分,F(xiàn)1,F(xiàn)2是其兩焦點(diǎn).曲線C2是以原點(diǎn)O為頂點(diǎn)、F2為焦點(diǎn)的拋物線的一部分,A是曲線C1和C2的一個(gè)公共點(diǎn),并且∠AF2F1為鈍角.我們把由曲線C1和C2合成的曲線C稱為“月食圓”.
①若|AF1|=7,|AF2|=5,則曲線C1、C2的方程分別為
$\frac{{x}^{2}}{36}$+$\frac{{y}^{2}}{32}$=1(-6≤x≤3)、y2=8x(0≤x≤3)
②過F2作直線l,分別于“月食圓”依次交于B、C、D、E四點(diǎn),若B(x1,y1),E(x2,y2),C(x3,y3),D(x4,y4),則x1x2x3x4為定值;
③連接BF1,EF2,在△BF1F2中,記∠F1BF2=α,∠BF1F2=β,∠F1F2B=γ,則e=$\frac{sinα}{sinβ+sinγ}$;
④若P、Q為橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1上兩動(dòng)點(diǎn),且OP⊥OQ,則S△OPQ的最小值是$\frac{{a}^{2}^{2}}{{a}^{2}+^{2}}$.
以上說法正確的有①③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在平行四邊形ABCD中,已知$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AD}$=$\overrightarrow$,E、F分別是邊CD和BC上的點(diǎn),滿足$\overrightarrow{DC}$=3$\overrightarrow{DE}$,$\overrightarrow{BC}$=3$\overrightarrow{BF}$.
(Ⅰ)分別用$\overrightarrow a$,$\overrightarrow b$表示向量$\overrightarrow{AE}$,$\overrightarrow{AF}$;
(Ⅱ)若$\overrightarrow{AC}$=λ$\overrightarrow{AE}$+μ$\overrightarrow{AF}$,其中λ,μ∈R,求出λ+μ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.函數(shù)f(x)=x3+3x2-9x+5的單調(diào)遞增區(qū)間是(-∞,-3),(1,+∞).

查看答案和解析>>

同步練習(xí)冊(cè)答案