11.已知全集U=R,集合A={x|x2-x-6≤0},B={x|${log}_{\frac{1}{2}}$x≥-1},則集合A∩(∁UB)=[-2,0]∪(2,3].

分析 根據(jù)題意,解x2-x-6≤0可得集合A,解${log}_{\frac{1}{2}}$x≥-1可得集合B,由補(bǔ)集的定義可得∁UB,進(jìn)而由交集的定義計(jì)算可得答案.

解答 解:根據(jù)題意,x2-x-6≤0⇒-2≤x≤3,則A={x|x2-x-6≤0}=[-2,3],
${log}_{\frac{1}{2}}$x≥-1⇒0<x≤2,B={x|${log}_{\frac{1}{2}}$x≥-1}=(0,2],則∁UB=(-∞,0]∪(2,+∞),
A∩(∁UB)=[-2,0]∪(2,3];
故答案為:[-2,0]∪(2,3].

點(diǎn)評(píng) 本題考查集合交集、并集補(bǔ)集的計(jì)算,關(guān)鍵是正確求出集合A、B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=aln(x+1)+bx+1
(1)若函數(shù)y=f(x)在x=1處取得極值,且曲線y=f(x)在點(diǎn)(0,f(0))處的切線與直線2x+y-3=0平行,求a的值;
(2)若$b=\frac{1}{2}$,試討論函數(shù)y=f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.函數(shù)y=lnx-x在x∈(0,e]上的最大值為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.不等式 x2-3x-4>0的解集為{x|x<-1或x>4}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.某大學(xué)為了解在校本科生對(duì)參加某項(xiàng)社會(huì)實(shí)踐活動(dòng)的意向,擬采用分層抽樣的方法,從該校四個(gè)年級(jí)的本科生中抽取一個(gè)容量為300的樣本進(jìn)行調(diào)查.已知該校一年級(jí)、二年級(jí)、三年級(jí)、四年級(jí)的本科生人數(shù)之比為5:4:5:6,則應(yīng)從一年級(jí)本科生中抽取75名學(xué)生.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.?dāng)?shù)列{an}中,a1=3,對(duì)任意n∈N*,向量$\overrightarrow{a}$=(an+1,3)與$\overrightarrow$=(an,1)都平行,數(shù)列{bn}滿足bn=31-31log3an
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{bn}的前n項(xiàng)和Bn的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.將區(qū)間[2,8]等間隔地插入n-1個(gè)點(diǎn),則每個(gè)區(qū)間的長(zhǎng)度為$\frac{6}{n}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.以直角坐標(biāo)系xOy的原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸,且兩坐標(biāo)系取相同的長(zhǎng)度單位.已知曲線C1的參數(shù)方程為:$\left\{\begin{array}{l}x=2cosθ\\ y=2sinθ\end{array}\right.$(θ為參數(shù)),將曲線C1上每一點(diǎn)的縱坐標(biāo)變?yōu)樵瓉?lái)的$\frac{1}{2}$倍(橫坐標(biāo)不變),得到曲線C2,直線l的極坐標(biāo)方程:$\sqrt{3}ρcosθ+2ρsinθ+m=0$.
(Ⅰ)求曲線C2的參數(shù)方程;
(Ⅱ)若曲線C2上的點(diǎn)到直線l的最大距離為$2\sqrt{7}$,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.f(x)=|x-3|-2,g(x)=4-|x+1|
(Ⅰ)若f(x)≥g(x),求x的取值范圍;
(Ⅱ)若不等式f(x)-g(x)≥a2-3a的解集為R,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案