【題目】已知函數(shù)是偶函數(shù).

(1)求的值;

(2)若函數(shù)沒(méi)有零點(diǎn),求得取值范圍;

(3)若函數(shù), 的最小值為0,求實(shí)數(shù)的值.

【答案】1;(2;(3).

【解析】試題分析:(1)若函數(shù)是偶函數(shù),則f(﹣x)=f(x),可得k的值;

2函數(shù)沒(méi)有零點(diǎn),即方程無(wú)實(shí)數(shù)根,令,則函數(shù)的圖象與直線無(wú)交點(diǎn),則a不屬于函數(shù)g(x)值域;

(3)函數(shù), ,令t=2x[1,3],則y=t2+mt,t[1,3],結(jié)合二次函數(shù)的圖象和性質(zhì),分類討論,可得m的值.

試題解析:

1是偶函數(shù),∴,

對(duì)任意恒成立.

,

.

(2)函數(shù)沒(méi)有零點(diǎn),即方程無(wú)實(shí)數(shù)根.

,則函數(shù)的圖象與直線無(wú)交點(diǎn),

,

,,

的取值范圍是.

(3)由題意 ,

,

①當(dāng),即時(shí),

, ;

②當(dāng),即時(shí),

, (舍去);

③當(dāng),即時(shí),

(舍去).

綜上可知,實(shí)數(shù).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在南北方向有一條公路,一半徑為100m的圓形廣場(chǎng)(圓心為O)與此公路一邊所在直線l相切于點(diǎn)A.點(diǎn)P為北半圓。ɑPB)上的一點(diǎn),過(guò)P作直線l的垂線,垂足為Q.計(jì)劃在△PAQ內(nèi)(圖中陰影部分)進(jìn)行綠化.設(shè)△PAQ的面積為S(單位:m2).
(1)設(shè)∠BOP=α(rad),將S表示為α的函數(shù);
(2)確定點(diǎn)P的位置,使綠化面積最大,并求出最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),且當(dāng)x>0時(shí),f(x)=log2x,g(x)=2log2(2x+a),a∈R
(1)求函數(shù)f(x)的解析式;
(2)若對(duì)任意x∈[1,4],f(4x)≤g(x),求實(shí)數(shù)a的取值范圍;
(3)設(shè)a>﹣2,求函數(shù)h(x)=g(x)﹣f(x),x∈[1,2]的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:函數(shù)fx= a>0a≠1.

(Ⅰ)求函數(shù)fx)的定義域;

(Ⅱ)判斷函數(shù)fx)的奇偶性,并加以證明;

(Ⅲ)設(shè)a=,解不等式fx>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四棱錐中,底面是邊長(zhǎng)為1的正方形,側(cè)棱底面,且, 是側(cè)棱上的動(dòng)點(diǎn).

(1)求四棱錐的表面積;

(2)是否在棱上存在一點(diǎn),使得平面;若存在,指出點(diǎn)的位置,并證明;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知, 為不同的直線, , 不同的平面,則下列判斷正確的是()

A. , ,則 B. , ,則

C. , ,則 D. , , ,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若存在不為零的常數(shù),使得函數(shù)對(duì)定義域內(nèi)的任一均有,則稱函數(shù)為周期函數(shù),其中常數(shù)就是函數(shù)的一個(gè)周期.

(1)證明:若存在不為零的常數(shù)使得函數(shù) 對(duì)定義域內(nèi)的任一均有,則此函數(shù)是周期函數(shù).

(2)若定義在上的奇函數(shù)滿足,試探究此函數(shù)在區(qū)間

內(nèi)零點(diǎn)的最少個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果函數(shù)f(x)=ax2+2x﹣3在區(qū)間(﹣∞,4)上是單調(diào)遞增的,則實(shí)數(shù)a的取值范圍是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=alnx﹣x2+1. (Ⅰ)若曲線y=f(x)在x=1處的切線方程為4x﹣y+b=0,求實(shí)數(shù)a和b的值;
(Ⅱ)討論函數(shù)f(x)的單調(diào)性;
(Ⅲ)若a<0,且對(duì)任意x1 , x2∈(0,+∞),x1≠x2 , 都有|f(x1)﹣f(x2)|>|x1﹣x2|,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案