山水城市鎮(zhèn)江有“三山”--金山、焦山、北固山,一位游客游覽這三個景點的概率都是0.5,且該游客是否游覽這三個景點相互獨立,用ξ表示這位游客游覽的景點數(shù)和沒有游覽的景點數(shù)差的絕對值,求ξ的分布列和數(shù)學(xué)期望.
考點:離散型隨機變量的期望與方差,離散型隨機變量及其分布列
專題:概率與統(tǒng)計
分析:由已知得這位游客游覽景點個數(shù)為0,1,2,3,ξ的可能取值為1,3,分別求出相應(yīng)的概率,由此能求出ξ的分布列和Eξ.
解答: 解:由已知得這位游客游覽景點個數(shù)為0,1,2,3,
ξ的可能取值為1,3,
P(ξ=1)=
C
2
3
(
1
2
)2(1-
1
2
)
+
C
1
3
(
1
2
)(1-
1
2
)2
=
3
4
,
P(ξ=3)=
C
3
3
(
1
2
)3+
C
0
3
(1-
1
2
)3
=
1
4
,
∴ξ的分布列為:
 ξ 1 3
 P 
3
4
 
1
4
Eξ=
3
4
+3×
1
4
=
3
2
點評:本題考查離散型隨機變量的分布列和數(shù)學(xué)期望的求法,是中檔題,解題時要注意n次獨立重復(fù)試驗中事件A恰好發(fā)生k次的概率計算公式的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

直角坐標系中,y=ax+
1
a
與y=ax2的圖象可能是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列四個命題:
①空間四點共面,則其中必有三點共線;
②空間四點中有三點共線,則此四點必共面;
③空間四點中任何三點不共線,則此四點不共面;
④空間四點不共面,則任意三點不共線.
其中正確命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,2cos(A+B)=1.
(1)求角C的度數(shù);
(2)若BC=a,AC=b且a,b是方程x2-2
3
x+2=0的兩個根,求AB的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將兩個數(shù)a=8,b=17交換,使a=17,b=8,下面語句正確的一組是( 。
A、a=b b=a
B、b=a a=b
C、c=b b=a a=c
D、a=c c=b b=a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
1
3x+1
+m是奇函數(shù),則f(-1)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某學(xué)校為了解高三年級學(xué)生寒假期間的學(xué)習(xí)情況,抽取甲、乙兩班,調(diào)查這兩個班的學(xué)生在寒假期間每天平均學(xué)習(xí)的時間(單位:小時),統(tǒng)計結(jié)果繪成頻率分布直方圖(如圖).已知甲、乙兩班學(xué)生人數(shù)相同,甲班學(xué)生每天平均學(xué)習(xí)時間在區(qū)間[2,4]的有8人.

(1)求直方圖中a的值及甲班學(xué)生每天平均學(xué)習(xí)時間在區(qū)間(10,12]的人數(shù);
(2)從甲、乙兩個班每天平均學(xué)習(xí)時間大于10個小時的學(xué)生中任取4人參加測試,設(shè)4人中甲班學(xué)生的人數(shù)為ξ,求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義A°B=
AB,AB≥A+B
A+B,AB<A+B
,A•B=
A+B,AB≥A+B
AB,AB<A+B
,設(shè)x>0,A=
1
x+1
,B=x,則 A° B-A•B的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓x2+y2-4x-4=0上的點P(x,y),則x2+y2的最大值為
 

查看答案和解析>>

同步練習(xí)冊答案