【題目】已知函數(shù) f (x) = x ex (xR)

Ⅰ)求函數(shù) f (x)的單調(diào)區(qū)間和極值;

Ⅱ)若x (0, 1), 求證: f (2 x) > f (x);

Ⅲ)若x1 (0, 1), x2(1, +∞), f (x1) = f (x2), 求證: x1 + x2 > 2.

【答案】(1)()內(nèi)是增函數(shù), ()內(nèi)是減函數(shù).處取得極大值(2)見解析(3)見解析

【解析】

(Ⅰ)直接利用函數(shù)的導(dǎo)數(shù),求出極值點(diǎn),判斷導(dǎo)函數(shù)的符號(hào),即可求函數(shù)f(x)的單調(diào)區(qū)間及極值;

(Ⅱ)令g(x)=f(x)﹣f(2﹣x)求出g(x)=(x﹣1)(e2x﹣2﹣1)e﹣x,通過x1,判斷g(x)在[1,+∞)上是增函數(shù),即可證明當(dāng)x1時(shí),f(x)>f(2﹣x);

(Ⅲ)因?yàn)?/span>x1,x2分別在(0,1)(1,+∞)利用函數(shù)的關(guān)系式,證明x1+x2>2.

解:=(1﹣x)e﹣x

,則x=1

當(dāng)x變化時(shí),,f(x)的變化情況如下表:

x

(﹣∞,1)

1

(1,+∞)

+

0

f(x)

極大值

f(x)在(﹣,1)上是增函數(shù),在(1,+∞)上是減函數(shù)

f(x)在x=1處取得極大值;

(Ⅱ)證明:令g(x)=f(x)﹣f(2﹣x)

則g(x)=xe﹣x﹣(2﹣x)ex﹣2

∴g(x)=(x﹣1)(e2x﹣2﹣1)e﹣x

當(dāng)時(shí), ,從而

所以,從而函數(shù)是增函數(shù).∵e﹣x>0,∴g(x)>0,∴g(x)在[1,+∞)上是增函數(shù)

∵g(1)=0∴0<x<1時(shí),g(x)<g(1)=0

即當(dāng)0<x<1時(shí),f(x)<f(2﹣x)

() 證明:

():

()內(nèi)是減函數(shù)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=sinωx﹣cosωx(ω>0),,若方程f(x)=﹣1(0,π)上有且只有四個(gè)實(shí)數(shù)根,則實(shí)數(shù)ω的取值范圍為 ( )

A. ,] B. ,] C. ,] D. ,]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】記無窮數(shù)列的前項(xiàng)中最大值為,最小值為,令

(Ⅰ)若,請(qǐng)寫出的值;

(Ⅱ)求證:“數(shù)列是等差數(shù)列”是“數(shù)列是等差數(shù)列”的充要條件;

(Ⅲ)若 ,求證:存在,使得,有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于函數(shù),若在其定義域內(nèi)存在,使得成立,則稱函數(shù)具有性質(zhì)

)下列函數(shù)中具有性質(zhì)的有__________

)若函數(shù)具有性質(zhì),則實(shí)數(shù)的取值范圍是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某鎮(zhèn)在政府精準(zhǔn)扶貧的政策指引下,充分利用自身資源,大力發(fā)展養(yǎng)殖業(yè),以增加收入.政府計(jì)劃共投入72萬元,全部用于甲、乙兩個(gè)合作社,每個(gè)合作社至少要投入15萬元,其中甲合作社養(yǎng)魚,乙合作社養(yǎng)雞,在對(duì)市場(chǎng)進(jìn)行調(diào)研分析發(fā)現(xiàn)養(yǎng)魚的收益、養(yǎng)雞的收益與投入(單位:萬元)滿足.設(shè)甲合作社的投入為(單位:萬元),兩個(gè)合作社的總收益為(單位:萬元).

1)若兩個(gè)合作社的投入相等,求總收益;

2)試問如何安排甲、乙兩個(gè)合作社的投入,才能使總收益最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),在以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸的極坐標(biāo)中,圓的方程為

(1)寫出直線的普通方程和圓的直角坐標(biāo)方程;

(2)若點(diǎn)的坐標(biāo)為,圓與直線交于兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量,向量,且函數(shù).

(1)求函數(shù)的單調(diào)遞增區(qū)間及其對(duì)稱中心;

(2)中,角AB,C所對(duì)的邊分別為a,bc且角A滿足.,BC邊上的中線長為3,求的面積S.

(3)將函數(shù)的圖像向左平移個(gè)長度單位,向下平移個(gè)長度單位,再橫坐標(biāo)不變,縱坐標(biāo)縮短為原來的后得到函數(shù)的圖像,令函數(shù)的最小值為,求正實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列說法:

①“”是“”的充分不必要條件;

②定義在上的偶函數(shù)的最大值為30;

③命題“,”的否定形式是“”.其中正確說法的個(gè)數(shù)為

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年國際乒聯(lián)總決賽在韓國仁川舉行,比賽時(shí)間為12131216日,在男子單打項(xiàng)目,中國隊(duì)準(zhǔn)備選派4人參加.已知國家一線隊(duì)共6名隊(duì)員,二線隊(duì)共4名隊(duì)員.

1)求恰好有3名國家一線隊(duì)隊(duì)員參加比賽的概率;

2)設(shè)隨機(jī)變量表示參加比賽的國家二線隊(duì)隊(duì)員的人數(shù),求的分布列.

查看答案和解析>>

同步練習(xí)冊(cè)答案