【題目】坐標(biāo)系與參數(shù)方程:在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知點(diǎn)的極坐標(biāo)為,直線的極坐標(biāo)方程為,且點(diǎn)在直線上
(Ⅰ)求的值和直線的直角坐標(biāo)方程及的參數(shù)方程;
(Ⅱ)已知曲線的參數(shù)方程為,(為參數(shù)),直線與交于兩點(diǎn),求的值
【答案】(Ⅰ),的直角坐標(biāo)方程為,的參數(shù)方程為:(Ⅱ)
【解析】
(Ⅰ)將點(diǎn)的極坐標(biāo)方程代入直線的極坐標(biāo)方程可求出的值,然后將直線方程化為普通方程,確定直線的傾斜角,即可將直線的方程表示為參數(shù)方程的形式;
(Ⅱ)將曲線的參數(shù)方程表示普通方程,然后將(Ⅰ)中直線的參數(shù)方程與曲線的普通方程聯(lián)立,得到關(guān)于的一元二次方程,并列出韋達(dá)定理,根據(jù)的幾何意義計(jì)算出
和,于是可得出
的值。
解:(Ⅰ)因?yàn)辄c(diǎn),所以;
由得
于是的直角坐標(biāo)方程為;
的參數(shù)方程為: (t為參數(shù))
(Ⅱ)由: ,
將的參數(shù)方程代入得
,設(shè)該方程的兩根為,由直線的參數(shù)的幾何意義及曲線知,
,
所以。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下表是某公司2018年5~12月份研發(fā)費(fèi)用(百萬(wàn)元)和產(chǎn)品銷(xiāo)量(萬(wàn)臺(tái))的具體數(shù)據(jù):
月 份 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
研發(fā)費(fèi)用(百萬(wàn)元) | 2 | 3 | 6 | 10 | 21 | 13 | 15 | 18 |
產(chǎn)品銷(xiāo)量(萬(wàn)臺(tái)) | 1 | 1 | 2 | 2.5 | 6 | 3.5 | 3.5 | 4.5 |
(Ⅰ)根據(jù)數(shù)據(jù)可知與之間存在線性相關(guān)關(guān)系,求出與的線性回歸方程(系數(shù)精確到0.01);
(Ⅱ)該公司制定了如下獎(jiǎng)勵(lì)制度:以(單位:萬(wàn)臺(tái))表示日銷(xiāo)售,當(dāng)
參考數(shù)據(jù):,,,,
參考公式:相關(guān)系數(shù),其回歸直線中的,若隨機(jī)變量服從正態(tài)分布,則,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓的左焦點(diǎn)為,右頂點(diǎn)為,離心率為.已知是拋物線的焦點(diǎn), 到拋物線的準(zhǔn)線的距離為.
(I)求橢圓的方程和拋物線的方程;
(II)設(shè)上兩點(diǎn), 關(guān)于軸對(duì)稱(chēng),直線與橢圓相交于點(diǎn)(異于點(diǎn)),直線與軸相交于點(diǎn).若的面積為,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知定點(diǎn),點(diǎn)在軸上運(yùn)動(dòng),點(diǎn)在軸上運(yùn)動(dòng),點(diǎn)為坐標(biāo)平面內(nèi)的動(dòng)點(diǎn),且滿(mǎn)足,.
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)過(guò)曲線第一象限上一點(diǎn)(其中)作切線交直線于點(diǎn),連結(jié)并延長(zhǎng)交直線于點(diǎn),求當(dāng)面積取最小值時(shí)切點(diǎn)的橫坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】橢圓的離心率是,且以?xún)山裹c(diǎn)間的線段為直徑的圓的內(nèi)接正方形面積是.
(1)求橢圓的方程;
(2)過(guò)左焦點(diǎn)的直線與相交于、兩點(diǎn),直線,過(guò)作垂直于的直線與直線交于點(diǎn),求的最小值和此時(shí)的直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓,過(guò)點(diǎn)作的異于軸的切線,過(guò)點(diǎn)作的異于軸的切線.設(shè)與交于點(diǎn),記的軌跡為.
(1)求的方程;
(2)已知,在點(diǎn)處的切線交直線于點(diǎn),過(guò)原點(diǎn)與平行的直線交于點(diǎn).證明:以為直徑的圓截軸的弦長(zhǎng)為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知矩形中,,E,F分別為,的中點(diǎn).沿將矩形折起,使,如圖所示.設(shè)P、Q分別為線段,的中點(diǎn),連接.
(1)求證:平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠擬修建一個(gè)無(wú)蓋的圓柱形蓄水池(不計(jì)厚度).設(shè)該蓄水池的底面半徑為米,高為米,體積為立方米.假設(shè)建造成本僅與表面積有關(guān),側(cè)面的建造成本為100元/平方米,底面的建造成本為160元/平方米,該蓄水池的總建造成本為元(為圓周率).該蓄水池的體積最大時(shí)______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角梯形中,E,F分別為AB的三等分點(diǎn),,,,若沿著FG,ED折疊使得點(diǎn)A,B重合,如圖2所示,連結(jié)GC,BD
(1)求證:平面平面BCDE;
(2)求二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com