(本題12分)

如圖的幾何體中,平面,平面,△為等邊三角形, ,的中點(diǎn).

(1)求證:平面;

(2)求證:平面平面

(3)求此幾何體的體積。

 

【答案】

(1)只需證;(2)只需證BG⊥平面;(3)。

【解析】

試題分析:證明:取的中點(diǎn),連結(jié).∵的中點(diǎn),∴

平面,平面, ∴,∴. 

,∴. ∴四邊形為平行四邊形,則

平面,平面, ∴平面.…………4分

8分

(3)解:取DE的中點(diǎn)M連BM,GM所以

=…………12分

考點(diǎn):線面垂直的性質(zhì)定理;線面平行的判斷定理;面面垂直的判定定理;四棱錐的體積公式。

點(diǎn)評:證明線面平行的常用方法:

①定義:若一條直線和一個(gè)平面沒有公共點(diǎn),則它們平行;

②線線平行Þ線面平行

若平面外的一條直線平行于平面內(nèi)的一條直線,則它與這個(gè)平面平行。

     

③面面平行Þ線面平行

若兩平面平行,則其中一個(gè)平面內(nèi)的任一條直線平行于另一個(gè)平面。

  

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014屆浙江省高二9月質(zhì)量檢測文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題12分)如圖,在側(cè)棱錐垂直底面的四棱錐ABCD-A1B1C1D1中,AD∥BC,

AD⊥AB,AB=。AD=2,BC=4,AA1=2,E是DD1的中點(diǎn),F(xiàn)是平面B1C1E

與直線AA1的交點(diǎn)。

(1)證明:(i)EF∥A1D1;

(ii)BA1⊥平面B1C1EF;

(2)求BC1與平面B1C1EF所成的角的正弦值。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆廣東省高二文科數(shù)學(xué)競賽試卷(解析版) 題型:解答題

(本題12分)如圖所示,在直四棱柱中, ,點(diǎn)是棱上一點(diǎn).

(1)求證:;

(2)求證:;

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省高三全真模擬考試數(shù)學(xué)文卷 題型:解答題

((本題12分)如圖所示,在直四棱柱中, ,點(diǎn)是棱上一點(diǎn)

(1)求證:

(2)求證:;

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012年山東省濟(jì)寧市高二上學(xué)期期中考試文科數(shù)學(xué) 題型:解答題

(本題12分)如圖1,在直角梯形ABCD中,∠ADC=90°,CDABAB=4,ADCD=2,M為線段AB的中點(diǎn),將△ACD沿折起,使平面ACD⊥平面ABC,得到幾何體DABC,如圖2所示.

(Ⅰ)求證:BC⊥平面ACD;

(Ⅱ)求二面角ACDM的余弦值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆四川省巴中市四縣中高二上學(xué)期期末考試?yán)砜茢?shù)學(xué) 題型:解答題

((本題12分)如圖2,在棱長為1的正方體ABCD—A1B1C1D1中,點(diǎn)E、F、G分別是DD1、BD、BB1的中點(diǎn)。

(Ⅰ)求直線EF與直線CG所成角的余弦值;

 (Ⅱ)求直線C1C與平面GFC所成角的正弦值;

     (Ⅲ)求二面角E—FC—B的余弦值。

 

 

 

 

 

查看答案和解析>>

同步練習(xí)冊答案