6.已知正數(shù)數(shù)列{an}的前n項和Sn滿足:Sn和2的等比中項等于an和2的等差中項,則a1=2,Sn=2n2

分析 由等差中項和等比中項可得$\frac{{a}_{n}+2}{2}$=$\sqrt{2{S}_{n}}$,平方可得Sn=$\frac{({a}_{n}+2)^{2}}{8}$,把n=1代入可得a1=2,還可得Sn-1=$\frac{({a}_{n-1}+2)^{2}}{8}$,又an=SnS-n-1,數(shù)列各項都是正數(shù),可得an-an-1=4,可得數(shù)列為等差數(shù)列,可得前n項和公式.

解答 解:由題意知$\frac{{a}_{n}+2}{2}$=$\sqrt{2{S}_{n}}$,平方可得Sn=$\frac{({a}_{n}+2)^{2}}{8}$,①
①由a1=S1得$\frac{{a}_{1}+2}{2}$=$\sqrt{2{a}_{1}}$,從而可解得a1=2.
又由①式得Sn-1=$\frac{({a}_{n-1}+2)^{2}}{8}$(n≥2)…②
①-②可得an=SnS-n-1=$\frac{({a}_{n}+2)^{2}}{8}$-$\frac{({a}_{n-1}+2)^{2}}{8}$(n≥2)
整理得(an+an-1)(an-an-1-4)=0 
∵數(shù)列{an}的各項都是正數(shù),
∴an-an-1-4=0,即an-an-1=4.
故數(shù)列{an}是以2為首項4為公差的等差數(shù)列,
∴Sn=2n+$\frac{n(n-1)}{2}×4$=2n2
當(dāng)n=1時,S1=a1=2.
故Sn=2n2
故答案是:2;2n2

點(diǎn)評 本題考查等差數(shù)列和等比數(shù)列的性質(zhì),屬中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.某單位附近只有甲,乙兩個臨時停車場,它們各有50個車位,為了方便市民停車,某互聯(lián)網(wǎng)停車公司對這兩個停車場在工作日某些固定時刻的剩余停車位進(jìn)行記錄,如下表:
時間8點(diǎn)10點(diǎn)12點(diǎn)14點(diǎn)16點(diǎn)18點(diǎn)
停車場甲1031261217
停車場乙13432619
如果表中某一時刻停車場剩余停車位數(shù)低于總車位數(shù)的10%,那么當(dāng)車主驅(qū)車抵達(dá)單位附近時,該公司將會向車主發(fā)出停車場飽和警報.
(Ⅰ)假設(shè)某車主在以上六個時刻抵達(dá)單位附近的可能性相同,求他收到甲停車場飽和警報的概率;
(Ⅱ)從這六個時刻中任選一個時刻,求甲停車場比乙停車場剩余車位數(shù)少的概率;
(Ⅲ)當(dāng)停車場乙發(fā)出飽和警報時,求停車場甲也發(fā)出飽和警報的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知f(x)=|x-a|,a∈R.
(1)當(dāng)a=1時,求不等式f(x)+|2x-5|≥6的解集;
(2)若函數(shù)g(x)=f(x)-|x-3|的值域為A,且[-1,2]⊆A,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知Sn為數(shù)列{an}的前n項和,an=2•3n-1(n∈N*),若bn=$\frac{{a}_{n+1}}{{S}_{n}{S}_{n+1}}$,則b1+b2+…bn=$\frac{1}{2}$-$\frac{1}{{3}^{n+1}-1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知曲線$y=\frac{1}{4}{x^2}-3lnx$的一條切線的斜率為$-\frac{1}{2}$,則切點(diǎn)的橫坐標(biāo)為( 。
A.-3B.2C.-3或2D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知袋中裝有大小相同的2個白球,2個紅球和1個黃球.一項游戲規(guī)定:每個白球、紅球和黃球的分值分別是0分、1分和2分,每一局從袋中一次性取出三個球,將3個球?qū)?yīng)的分值相加后稱為該局的得分,計算完得分后將球放回袋中.當(dāng)出現(xiàn)第n局得n(n∈N*)分的情況就算游戲過關(guān),同時游戲結(jié)束,若四局過后仍未過關(guān),游戲也結(jié)束.
(1)求在一局游戲中得3分的概率;
(2)求游戲結(jié)束時局?jǐn)?shù)X的分布列和數(shù)學(xué)期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)復(fù)數(shù)z1,z2在復(fù)平面內(nèi)的對應(yīng)點(diǎn)關(guān)于實軸對稱,z1=2+i,則z1z2=(  )
A.3B.5C.-4+iD.4+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.某學(xué)校高一、高二、高三三個年級共有300名教師,為調(diào)查他們的備課時間情況,通過分層抽樣獲得了20名教師一周的備課時間,數(shù)據(jù)如下表(單位:小時):
高一年級77.588.59
高二年級78910111213
高三年級66.578.51113.51718.5
(1)試估計該校高三年級的教師人數(shù);
(2)從高一年級和高二年級抽出的教師中,各隨機(jī)選取一人,高一年級選出的人記為甲,高二年級選出的人記為乙,假設(shè)所有教師的備課時間相對獨(dú)立,求該周甲的備課時間不比乙的備課時間長的概率;
(3)再從高一、高二、高三三個年級中各隨機(jī)抽取一名教師,他們該周的備課時間分別是8、9、10(單位:小時),這三個數(shù)據(jù)與表格中的數(shù)據(jù)構(gòu)成的新樣本的平均數(shù)記為$\overline{x_1}$,表格中的數(shù)據(jù)平均數(shù)記為$\overline{x_0}$,試判斷$\overline{x_0}$與$\overline{x_1}$的大。ńY(jié)論不要求證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若非零向量$\overrightarrow a$,$\overrightarrow b$滿足|$\overrightarrow a$|=|$\overrightarrow a$+$\overrightarrow b$|=2,|$\overrightarrow b$|=1,則向量$\overrightarrow a$與$\overrightarrow b$夾角的余弦值為-$\frac{1}{4}$.

查看答案和解析>>

同步練習(xí)冊答案