數(shù)列,滿足.
(1)若是等差數(shù)列,求證:為等差數(shù)列;
(2)若,求數(shù)列的前項和.

(1)證明詳見解析.(2).

解析試題分析:(1)由,相減得,再求出,最后根據(jù)等差數(shù)列的定義求證即可.
(2),利用錯位相減法求出數(shù)列{Tn}的前n項和,然后求出bn,可得
=,最后利用裂項法求出即可.
試題解析:(1)證明:由題是等差數(shù)列,設(shè)的公差為

①;
②    3分
②-①可得:
    5分

是公差為的等差數(shù)列    7分
(2)記
① 
①-②得:

    11分
    13分
    14分
考點:1.數(shù)列的遞推公式和等差數(shù)列的判定;2.數(shù)列前n項和的求法.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

設(shè)不等式組所表示的平面區(qū)域為,記內(nèi)的格點(格點即橫坐標和縱坐標均為整數(shù)的點)個數(shù)為
(1)求的值及的表達式;
(2)設(shè)為數(shù)列的前項的和,其中,問是否存在正整數(shù),使成立?若存在,求出正整數(shù);若不存在,說明理由

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列中,為數(shù)列的前項和,且
(1)求數(shù)列的通項公式;
(2)設(shè),求數(shù)列的前項的和;
(3)證明對一切,有

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

數(shù)列{an}(n∈N)中,a1=0,當3an<n2時,an+1=n2,當3an>n2時,an+1=3an.求a2,a3,a4,a5,猜測數(shù)列的通項an并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設(shè)數(shù)列{an} 的前n項和為Sn,滿足2Sn=an+1﹣2n+1+1,n∈N*,且a1,a2+5,a3成等差數(shù)列.
(1)求a1,a2,a3的值;
(2)求證:數(shù)列{an+2n}是等比數(shù)列;
(3)證明:對一切正整數(shù)n,有++…+

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知曲線,過上一點作一斜率為的直線交曲線于另一點,點列的橫坐標構(gòu)成數(shù)列,其中.
(1)求的關(guān)系式;
(2)令,求證:數(shù)列是等比數(shù)列;
(3)若為非零整數(shù),),試確定的值,使得對任意,都有成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2013年我國汽車擁有量已超過2億(目前只有中國和美國超過2億),為了控制汽車尾氣對環(huán)境的污染,國家鼓勵和補貼購買小排量汽車的消費者,同時在部分地區(qū)采取對新車限量上號.某市采取對新車限量上號政策,已知2013年年初汽車擁有量為=100萬輛),第年(2013年為第1年,2014年為第2年,依次類推)年初的擁有量記為,該年的增長量的乘積成正比,比例系數(shù)為其中=200萬.
(1)證明:;
(2)用表示;并說明該市汽車總擁有量是否能控制在200萬輛內(nèi).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列,,
(1)求證:為等比數(shù)列,并求出通項公式;
(2)記數(shù)列 的前項和為,求

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列中,,前
(Ⅰ)求證:數(shù)列是等差數(shù)列; (Ⅱ)求數(shù)列的通項公式;
(Ⅲ)設(shè)數(shù)列的前項和為,是否存在實數(shù),使得對一切正整數(shù)都成立?若存在,求的最小值,若不存在,試說明理由.

查看答案和解析>>

同步練習冊答案