【題目】某學(xué)校為了解本校文、理科學(xué)生的學(xué)業(yè)水平模擬測試數(shù)學(xué)成績情況,分別從理科班學(xué)生中隨機(jī)抽取人的成績得到樣本甲,從文科班學(xué)生中隨機(jī)抽取人的成績得到樣本乙,根據(jù)兩個樣本數(shù)據(jù)分別得到如下直方圖:
甲樣本數(shù)據(jù)直方圖
乙樣本數(shù)據(jù)直方圖
已知乙樣本中數(shù)據(jù)在的有個.
(1)求和乙樣本直方圖中的值;
(2)試估計該校理科班學(xué)生本次模擬測試數(shù)學(xué)成績的平均值和文科班學(xué)生本次模擬測試數(shù)學(xué)成績的中位數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間中點值為代表).
【答案】(1),;
(2)81.5,82.5.
【解析】
(1)首先計算乙樣本中數(shù)據(jù)在的頻率,然后計算樣本容量,利用頻率和等于1求;(2)根據(jù)樣本平均值和中位數(shù)的計算公式分別計算;
(1)由直方圖可知,乙樣本中數(shù)據(jù)在的頻率為,而這個組學(xué)生有人,則,得.
由乙樣本數(shù)據(jù)直方圖可知,
故.
(2)甲樣本數(shù)據(jù)的平均值估計值為
.
由(1)知,故乙樣本數(shù)據(jù)直方圖中前三組的頻率之和為
,
前四組的頻率之和為,
故乙樣本數(shù)據(jù)的中位數(shù)在第組,則可設(shè)該中位數(shù)為,
由得
,故乙樣本數(shù)據(jù)的中位數(shù)為.
根據(jù)樣本估計總體的思想,可以估計該校理科班學(xué)生本次模擬測試數(shù)學(xué)成績的平均值約為,文科班學(xué)生本次模擬測試數(shù)學(xué)成績的中位數(shù)約為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),若曲線上始終存在兩點,使得,且的中點在軸上,則正實數(shù)的取值范圍為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為坐標(biāo)原點,點在圓:上.
(1)求實數(shù)的值;
(2)求過圓心且與直線平行的直線的方程;
(3)過點作互相垂直的直線,,與圓交于兩點,與圓交于兩點,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知六個直角邊均為1和的直角三角形圍成的兩個正六邊形,則該圖形繞著旋轉(zhuǎn)一周得到的幾何體的體積為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2017高考新課標(biāo)Ⅲ,理19)如圖,四面體ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.
(1)證明:平面ACD⊥平面ABC;
(2)過AC的平面交BD于點E,若平面AEC把四面體ABCD分成體積相等的兩部分,求二面角D–AE–C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(,為自然對數(shù)的底數(shù)).
(1)若函數(shù)存在極值點,求的取值范圍;
(2)設(shè),若不等式在上恒成立,求的最大整數(shù)值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若定義在上的函數(shù),.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若、、滿足,則稱比更接近.當(dāng),試比較和哪個更接近,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】質(zhì)檢部門為了解某企業(yè)生產(chǎn)的一-種圓柱形零件的質(zhì)量情況,隨機(jī)抽檢了100個零件,得到這些零件的橫截面直徑d(單位:)的頻率分布表如下:
d的分組 | |||||
零件數(shù) | 12 | 38 | 38 | 10 | 2 |
(1)試估計這個企業(yè)生產(chǎn)的這類零件的橫截面直徑不低于的概率;
(2)求這個企業(yè)生產(chǎn)的這類零件的橫截面直徑的平均數(shù)與標(biāo)準(zhǔn)差的估計值(同一組中的數(shù)據(jù)用該區(qū)間的中點值為代表).(精確到0.01)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,cosB=.
(Ⅰ)若c=2a,求的值;
(Ⅱ)若C-B=,求sinA的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com