A. | 8 | B. | 4 | C. | 2 | D. | 1 |
分析 由已知得f(-$\sqrt{2}$)=4$lo{{g}_{2}\sqrt{2}}^{\;}$=2,從而f(f(-$\sqrt{2}$))=f(2)=|4+2a|=4,進而a=-4,由此能求出f(a).
解答 解:∵a≠0,函數(shù)f(x)=$\left\{\begin{array}{l}4{log_2}(-x),x<0\\|{{x^2}+ax}|,x≥0\end{array}$,$f(f(-\sqrt{2}))=4$,
∴f(-$\sqrt{2}$)=4$lo{{g}_{2}\sqrt{2}}^{\;}$=2,
f(f(-$\sqrt{2}$))=f(2)=|4+2a|=4,
解得a=-4,
∴f(a)=f(-4)=4log24=8.
故選:A.
點評 本題考查函數(shù)值的求法,是基礎題,解題時要認真審題,注意函數(shù)性質的合理運用.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{8}$ | B. | $\frac{3}{8}$ | C. | $\frac{8}{27}$ | D. | $\frac{12}{27}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | .16或36 | B. | 36或64 | C. | 16或64 | D. | 36 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -$\frac{1}{2}$ | B. | -1 | C. | $\frac{1}{2}$ | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 數(shù)列{bn}是等差數(shù)列,{bn}的公差也為d | |
B. | 數(shù)列{bn}是等差數(shù)列,{bn}的公差為2d | |
C. | 數(shù)列{an+bn}是等差數(shù)列,{an+bn}的公差為d | |
D. | 數(shù)列{an-bn}是等差數(shù)列,{an-bn}的公差為$\fracdnvzfnh{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 必要不充分條件 | B. | 充分不必要條件 | ||
C. | 充要條件 | D. | 既非充分也非必要條件 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com