8.對(duì)于定義域?yàn)镽的函數(shù)y=f(x),部分x與y的對(duì)應(yīng)關(guān)系如表:
x-2-1012345
y02320-102
(1)求f{f[f(0)]};
(2)數(shù)列{xn}滿足x1=2,且對(duì)任意n∈N*,點(diǎn)(xn,xn+1)都在函數(shù)y=f(x)的圖象上,求x1+x2+…+x4n
(3)若y=f(x)=Asin(ωx+φ)+b,其中A>0,0<ω<π,0<φ<π,0<b<3,求此函數(shù)的解析式,并求f(1)+f(2)+…+f(3n)(n∈N*).

分析 (1)根據(jù)復(fù)合函數(shù)的性質(zhì),由內(nèi)往外計(jì)算可得答案.
(2)根據(jù)點(diǎn)(xn,xn+1)都在函數(shù)y=f(x)的圖象上,帶入,化簡,不難發(fā)現(xiàn)函數(shù)y是周期函數(shù),即可求解x1+x2+…+x4n的值.
(3)根據(jù)表中的數(shù)據(jù),帶入計(jì)算即可求解函數(shù)的解析式.

解答 解:(1)根據(jù)表中的數(shù)據(jù):f{f[f(0)]}=f(f(3))=f(-1)=2.
(2)由題意,x1=2,點(diǎn)(xn,xn+1)都在函數(shù)y=f(x)的圖象上,
即xn+1=f(xn
∴x2=f(x1)=f(2)=0,
x3=f(x2)=3,
x4=f(x3)=-1,
x5=f(x4)=2
∴x5=x1,
∴函數(shù)y是周期為4的函數(shù),
故得:x1+x2+…+x4n=4n.
(3)由題意得 $\left\{\begin{array}{l}f(-1)=2\begin{array}{l}{\;}…{(1)}\end{array}\\ f(1)=2\begin{array}{l}{\;}…{(2)}\end{array}\\ f(0)=3\begin{array}{l}{\;}…{(3)}\end{array}\\ f(2)=0\begin{array}{l}{\;}…{(4)}\end{array}\end{array}\right.$
由(1)-(2)∴sin(ω+φ)=sin(-ω+φ)∴sinωcosφ=0.
又∵0<ω<π
∴sinω≠0.
∴cosφ=0
而0<φ<π
∴$φ=\frac{π}{2}$
從而有$\left\{{\begin{array}{l}{A+b=3}\\{Acosω+b=2}\\{Acos2ω+b=0}\end{array}}\right.⇒b=3-A⇒\left\{{\begin{array}{l}{Acosω+3-A=2}\\{A(2{{cos}^2}ω-1)+3-A=0}\end{array}}\right.$.
∴2A2-4A+2-2A2+3A=0.
∴A=2.b=1$cosω=\frac{1}{2}$,
∵0<ω<π,
∴$ω=\frac{π}{3}$.
∴$f(x)=2cos\frac{π}{3}x+1$.
此函數(shù)的最小正周期T=$\frac{2π}{\frac{1}{3}}$=6,
f(6)=f(0)=3
∵f(1)+f(2)+f(3)+f(4)+f(5)+f(6)=6,
∴①當(dāng)n=2k(k∈N*)時(shí).f(1)+f(2)+…+f(3n)=f(1)+f(2)+…+f(6k)=k[f(1)+f(2)+…+f(6)]=6k=3n.
②當(dāng)n=2k-1(k∈N*)時(shí).f(1)+f(2)+…+f(3n)=f(1)+f(2)+…+f(6k)-f(6k-2)-f(6k-1)-f(6k)=k[f(1)+f(2)+…+f(6)]-5=6k-5=3n-2.

點(diǎn)評(píng) 本題主要考查對(duì)三角函數(shù)的化簡能力和三角函數(shù)的圖象和性質(zhì)的運(yùn)用,求出解析式是解決本題的關(guān)鍵.屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.不等式|x|•(1-2x)>0的解集是(  )
A.$(-∞,\frac{1}{2})$B.(-∞,0)∪$(0,\frac{1}{2})$C.$(\frac{1}{2},+∞)$D.$(0,\frac{1}{2})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知?jiǎng)狱c(diǎn)M(x,y)滿足:$\sqrt{(x+1)^{2}+{y}^{2}}$+$\sqrt{(x-1)^{2}+{y}^{2}}$=2$\sqrt{2}$,M的軌跡為曲線E.
(Ⅰ)求E的方程;
(Ⅱ)過點(diǎn)F(1,0)作直線l交曲線E于P,Q兩點(diǎn),交y軸于R點(diǎn),若$\overrightarrow{RP}$=λ1$\overrightarrow{PF}$,$\overrightarrow{RQ}$=λ2$\overrightarrow{QF}$,求證:λ12為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知雙曲線${x^2}-\frac{y^2}{a^2}=1(a>0)$,它的漸近線方程是y=±2x,則a的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)$f(x)=\frac{{{e^x}-{e^{-x}}}}{2}$,x1、x2、x3∈R,且x1+x2>0,x2+x3>0,x3+x1>0,則f(x1)+f(x2)+f(x3)的值( 。
A.一定等于零B.一定大于零C.一定小于零D.正負(fù)都有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知圓C:(x-4)2+(y-3)2=4和兩點(diǎn)A(-m,0),B(m,0)(m>0),若圓C上至少存在一點(diǎn)P,使得∠APB=90°,則m的取值范圍是[3,7].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.函數(shù)y=2sin2(2x)-1的最小正周期是$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知$f(x)=\frac{1-x}{1+x}$,數(shù)列{an}滿足${a_1}=\frac{1}{2}$,對(duì)于任意n∈N*都滿足an+2=f(an),且an>0,若a20=a18,則a2016+a2017的值為$\sqrt{2}-\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.?dāng)?shù)列{an}中,a1=$\frac{1}{2}$,an+1=$\frac{{{a}_{n}}^{2}}{{{a}_{n}}^{2}-{a}_{n}+1}$(n∈N*
(Ⅰ)求證:an+1<an;
(Ⅱ)記數(shù)列{an}的前n項(xiàng)和為Sn,求證:Sn<1.

查看答案和解析>>

同步練習(xí)冊(cè)答案