已知數(shù)列{an}的各項(xiàng)均是正數(shù),其前n項(xiàng)和為sn,滿足(p-1)sn=p2-an,其中p為正常數(shù),且p≠1。

(Ⅰ)求數(shù)列{an}的通項(xiàng)公式:

(Ⅱ)設(shè)bn=(n∈N),數(shù)列{bnbn+2}的前n項(xiàng)和為Tn,求證:

Tn<

(Ⅰ)


解析:

(Ⅱ)………………8分

bnbn-2=………………10分

Tn= b1b3+ b2b4+ b3b5+…

bnbn+2=

=………………12分

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)若一個(gè)數(shù)列各項(xiàng)取倒數(shù)后按原來的順序構(gòu)成等差數(shù)列,則稱這個(gè)數(shù)列為調(diào)和數(shù)列.已知數(shù)列{an}是調(diào)和數(shù)列,對(duì)于各項(xiàng)都是正數(shù)的數(shù)列{xn},滿足xnan=xn+1an+1=xn+2an+2(n∈N*).
(Ⅰ)證明數(shù)列{xn}是等比數(shù)列;
(Ⅱ)把數(shù)列{xn}中所有項(xiàng)按如圖所示的規(guī)律排成一個(gè)三角形數(shù)表,當(dāng)x3=8,x7=128時(shí),求第m行各數(shù)的和;
(Ⅲ)對(duì)于(Ⅱ)中的數(shù)列{xn},證明:
n
2
-
1
3
x1-1
x2-1
+
x2-1
x3-1
+…+
xn-1
xn+1-1
n
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}對(duì)于任意p,q∈N*,都有ap+aq=ap+q,且a1=2.
(1)求an的表達(dá)式;
(2)將數(shù)列{an}依次按1項(xiàng)、2項(xiàng)、3項(xiàng)、4項(xiàng)循環(huán)地分為(a1),(a2,a3),(a4,a5,a6),(a7,a8,a9,a10);(a11),(a12,a13),(a14,a15,a16),(a17,a18,a19,a20);(a21),…,分別計(jì)算各個(gè)括號(hào)內(nèi)各數(shù)之和,設(shè)由這些和按原來括號(hào)的前后順序構(gòu)成的數(shù)列為{bn},求b5+b100的值;
(3)設(shè)An為數(shù)列{
an-1
an
}
的前n項(xiàng)積,是否存在實(shí)數(shù)a,使得不等式An
an+1
<a-
3
2a
對(duì)一切n∈N*都成立?若存在,求出a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

例2.已知數(shù)列{an}的通項(xiàng)公式是an=
2n
3n+1
(n∈N*,n≤8)
,則下列各數(shù)是否為數(shù)列中的項(xiàng)?如果是,是第幾項(xiàng)?如果不是,為什么?(1)
3
5
(2)
11
17

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•南匯區(qū)二模)已知數(shù)列{an}中,若2an=an-1+an+1(n∈N*,n≥2),則下列各不等式中一定成立的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an},a1=1,an+1=an+2n,計(jì)算數(shù)列{an}前10項(xiàng)的和;現(xiàn)已給出了該問題算法的程序框圖(如圖所示),
(I)請?jiān)趫D中執(zhí)行框中的(A)處填上合適的語句,使之能完成該題算法功能;
(II)根據(jù)程序框圖寫出偽代碼.
(Ⅲ)按照流程圖,執(zhí)行完程序框圖后輸出結(jié)果,s,p,i的值各為多少?

查看答案和解析>>

同步練習(xí)冊答案