14.設(shè)變量x,y滿足約束條件$\left\{\begin{array}{l}{x-y-1≤0}\\{x+y≥0}\\{x+2y-4≥0}\end{array}\right.$,則z=x-2y的最大值為(  )
A.-12B.-1C.0D.$\frac{3}{2}$

分析 先畫出滿足約束條件的可行域,并求出各角點(diǎn)的坐標(biāo),然后代入目標(biāo)函數(shù),即可求出目標(biāo)函數(shù)z=x-2y的最大值.

解答 解:滿足約束條件$\left\{\begin{array}{l}{x-y-1≤0}\\{x+y≥0}\\{x+2y-4≥0}\end{array}\right.$的可行域如下圖所示:
由圖可知,由$\left\{\begin{array}{l}{x-y-1=0}\\{x+y=0}\end{array}\right.$可得C($\frac{1}{2}$,-$\frac{1}{2}$),
由:$\left\{\begin{array}{l}{x+y=0}\\{x+2y-4=0}\end{array}\right.$,可得A(-4,4),
由$\left\{\begin{array}{l}{x-y-1=0}\\{x+2y-4=0}\end{array}\right.$可得B(2,1),
當(dāng)x=2,y=1時,z=x-2y取最大值:0.
故選:C.

點(diǎn)評 本題考查的知識點(diǎn)是簡單的線性規(guī)劃,其中根據(jù)約束條件畫出可行域,進(jìn)而求出角點(diǎn)坐標(biāo),利用“角點(diǎn)法”解題是解答本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.矩形ABCD中,AB=3,AD=2,P矩形內(nèi)部一點(diǎn),且AP=1,若$\overrightarrow{AP}$=x$\overrightarrow{AB}$+y$\overrightarrow{AD}$,則3x+2y的取值范圍是(1,$\sqrt{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)f ( x)=2ax-a+3,若?x0∈(-1,1),f ( x0 )=0,則實(shí)數(shù) a 的取值范圍是(  )
A.(-∞,-3)∪(1,+∞)B.(-∞,-3)C.(-3,1)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知α為第四象限角,$sinα+cosα=\frac{1}{5}$,則$tan\frac{α}{2}$的值為(  )
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.$-\frac{1}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=|2x-a|+|2x+3|,g(x)=|2x-3|+2.
(Ⅰ)解不等式|g(x)|<5;
(Ⅱ)若對任意x1∈R,都存在x2∈R,使得f(x1)=g(x2)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}3x-1,x<1\\{2}^{x},x≥1\end{array}\right.$,則滿足f(f(a))=2f(a)的a取值范圍是( 。
A.[$\frac{2}{3}$,+∞)B.[$\frac{2}{3}$,1]C.[1,+∞)D.[0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.在△ABC中,若$\overrightarrow{BC}$•$\overrightarrow{BA}$+2$\overrightarrow{AC}$•$\overrightarrow{AB}$=$\overrightarrow{CA}$•$\overrightarrow{CB}$,則$\frac{sinA}{sinC}$的值為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.圓x2+y2=2的圓心到直線$y=x+\sqrt{2}$的距離為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在△ABC中,∠ACB=120°,D是 AB 上一點(diǎn),滿足∠ADC=60°,CD=2,若CB$≥\sqrt{6}$,則∠ACD的最大值為105°

查看答案和解析>>

同步練習(xí)冊答案