10.設(shè)$f(x)=\left\{\begin{array}{l}x+4,x≤-2或x≥3\\{x^2}-1,-2<x<3\end{array}\right.$,若函數(shù)y=f(x)+k的圖象與x軸恰有三個(gè)不同交點(diǎn),則k的取值范圍是(  )
A.(-2,1)B.[0,1]C.[-2,0)D.[-2,1)

分析 作出函數(shù)y=f(x)的圖象,由題意可得,函數(shù)y=f(x)與y=-k的圖象有3個(gè)交點(diǎn),結(jié)合圖象求得結(jié)果..

解答 解:設(shè)$f(x)=\left\{\begin{array}{l}x+4,x≤-2或x≥3\\{x^2}-1,-2<x<3\end{array}\right.$,畫(huà)出y=f(x)和y=-k的圖象,如圖所示:
由圖象得:-2≤k<1函數(shù)y=f(x)與y=-k的圖象有3個(gè)交點(diǎn),
即函數(shù)y=f(x)+k的圖象與x軸恰有三個(gè)公共點(diǎn);
故選:D

點(diǎn)評(píng) 本題主要考查根據(jù)函數(shù)的解析式作出函數(shù)的圖象,體現(xiàn)了化歸與轉(zhuǎn)化、數(shù)形結(jié)合的數(shù)學(xué)思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)=$\left\{\begin{array}{l}{|lnx|,x>0}\\{{x}^{2}+4x+1,x≤0}\end{array}\right.$,
(1)求函數(shù)f(x)的零點(diǎn);
(2)g(x)=f(x)-a 若函數(shù)g(x)有四個(gè)零點(diǎn),求a的取值范圍;
(3)在(2)的條件下,記g(x)得四個(gè)零點(diǎn)從左到右分別為x1,x2,x3,x4,求x1+x2+x3x4值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.某零件的三視圖如圖所示,則該零件的體積為(  )
A.$\frac{7}{3}$B.$\frac{8-π}{3}$C.$\frac{8}{3}$D.$\frac{7-π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知向量$\overrightarrow a,\overrightarrow b$滿足$|{\overrightarrow a}|=|{\overrightarrow b}|=|{\overrightarrow a+\overrightarrow b}|=1$,則$|{2\overrightarrow a+\overrightarrow b}|$=( 。
A.3B.$\sqrt{3}$C.7D.$\sqrt{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知O是坐標(biāo)原點(diǎn),A,B分別是函數(shù)y=sinπx以O(shè)為起點(diǎn)的一個(gè)周期內(nèi)的最大值點(diǎn)和最小值點(diǎn).則tan∠OAB=$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.設(shè)集合A={x|-x2-x+2<0},B={x|2x-5>0},則集合A與B的關(guān)系是( 。
A.B⊆AB.B?AC.B∈AD.A∈B

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x-1}-2,x≥1}\\{{2}^{1-x}-2,x<1}\end{array}\right.$,則不等式f(x-1)≤0的解集為( 。
A.{x|0≤x≤2}B.{x|0≤x≤3}C.{x|1≤x≤2}D.{x|1≤x≤3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.設(shè)a、b都是不等于1的正數(shù),則“a>b>1”是“l(fā)oga3<logb3”的(  )條件.
A.充要B.充分非必要
C.必要非充分D.既非充分也非必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)=lnx-kx+1(k∈R).
(Ⅰ)討論函數(shù)f(x)的零點(diǎn)個(gè)數(shù);
(Ⅱ)當(dāng)k=1時(shí),求證:2f(x)≤2-x-e1-x恒成立.

查看答案和解析>>

同步練習(xí)冊(cè)答案