18.已知f(x)=ax3+2x2+1,若f'(-1)=5,則a的值等于( 。
A.$-\frac{1}{3}$B.$\frac{1}{3}$C.$-\frac{5}{3}$D.3

分析 先計(jì)算f′(x),再根據(jù)f′(-1)=5,列出關(guān)于a的方程,即可解出a的值.

解答 解:∵f(x)=ax3+2x2+1,∴f′(x)=3ax2+4x,
∴f′(-1)=3a-4,
已知f′(-1)=5,
∴3a-4=5,解得a=3.
故選D.

點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的運(yùn)算,正確計(jì)算出f′(x)是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知數(shù)列{an}的前n項(xiàng)和Sn=n2+2n-1(n∈N*),則a1=2;數(shù)列{an}的通項(xiàng)公式為an=$\left\{\begin{array}{l}{2,n'=1}\\{2n+1,n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.在直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知點(diǎn)P的極坐標(biāo)為(2,$\frac{π}{2}$),曲線C的極坐標(biāo)方程為ρcosθ-ρsinθ=1,曲線D的參數(shù)方程為$\left\{\begin{array}{l}{x=1+cosα}\\{y=sinα}\end{array}\right.$(α為參數(shù)).曲線C和曲線D相交于A,B兩點(diǎn).
(1)求點(diǎn)P的直角坐標(biāo);
(2)求曲線C的直角坐標(biāo)方程和曲線D的普通方程;
(3)求△PAB的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知直線l,m,n及平面α,下列命題中錯(cuò)誤的是( 。
A.若l∥m,l∥n,則m∥nB.若l⊥α,n∥α,則l⊥nC.若l⊥m,m∥n,則l⊥nD.若l∥α,n∥α,則l∥n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知△ABC中,頂點(diǎn)A(7,-3),AC邊上的高BH所在直線方程為x-2y-5=0,AB邊上的中線CM所在的直線方程為6x-y-21=0.
(Ⅰ)求直線AC和直線BC的方程;
(Ⅱ)若點(diǎn)P滿足|$\overrightarrow{PA}$|=|$\overrightarrow{PB}$|=|$\overrightarrow{PC}$|,求$\overrightarrow{AP}$•$\overrightarrow{BC}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.若f(x)=ex•ln3x,則f'(x)=ex•ln3x+$\frac{1}{x}$•ex

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.在平行四邊形ABCD中,$\overrightarrow{AB}=(1,-2)$,$\overrightarrow{AD}=(2,1)$,則$\overrightarrow{AD}•\overrightarrow{AC}$=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.若等邊三角形ABC的邊長(zhǎng)為12,平面內(nèi)一點(diǎn)M滿足$\overrightarrow{CM}=\frac{3}{4}\overrightarrow{CA}+\frac{1}{3}\overrightarrow{CB}$,則$\overrightarrow{AM}•\overrightarrow{BM}$=( 。
A.-26B.-27C.-28D.-29

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知F1,F(xiàn)2是橢圓$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{36}$=1的兩個(gè)焦點(diǎn),過(guò)F1的直線交橢圓于P、Q兩點(diǎn),則△PQF2的周長(zhǎng)等于24.

查看答案和解析>>

同步練習(xí)冊(cè)答案