等腰△ABC中,AB=AC=5,BC=8,將三角形繞BC邊上中線旋轉(zhuǎn)半周所成的幾何體的體積為
 
考點:旋轉(zhuǎn)體(圓柱、圓錐、圓臺),棱柱、棱錐、棱臺的體積
專題:空間位置關系與距離
分析:根據(jù)圓錐的體積公式求解,結合直角三角形的性質(zhì)求解.
解答: 解:∵25-16=9,∴高為3,
根據(jù)題意可知幾何體為底面半徑為4,高為3,的圓柱,
1
3
×π×42×3
=16π,
故答案為:16π
點評:本題考查了簡單幾何體的體積的求解,屬于容易題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=f(x),對任意的x∈(-
π
2
,
π
2
)滿足f′(x)cosx+f(x)sinx>0(其中f′(x)是函數(shù)f(x)的導函數(shù)),則下列不等式成立的是(  )
A、
3
f(-
π
3
)<f(-
π
6
)
B、f(-
π
6
)>
3
2
f(0)
C、f(
π
4
)>
2
f(
π
3
)
D、f(0)>
2
f(
π
4
)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設A、B是雙曲線E的兩焦點,點C在E上,且∠CBA=
π
4
,若AB=8,BC=
2
,則雙曲線E的一個焦點到其中一條漸近線的距離為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線的頂點在原點,以y軸為對稱軸,其上各點與直線3x+4y=12的最短距離為1,求拋物線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設曲線y=(ax-1)ex在點A(x0,y1)處的切線為l1,曲線y=
1-x
ex
在點B(x0,y2)處的切線為l2.若存在x0∈[0,
3
2
],使得l1⊥l2,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sinωx+acosωx滿足f(0)=
3
,且f(x)圖象的相鄰兩條對稱軸間的距離為π.
(1)求a與ω的值;
(2)若f(a)=1,a∈(-
π
2
π
2
),求cos(a-
12
)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax3+bx2-3x在x=±1處取得極值,若過點A(0,16)作曲線y=f(x)的切線,則切線方程是( 。
A、9x+y-16=0
B、9x-y+16=0
C、x+9y-16=0
D、x-9y+16=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x3-x2+bx+c,且f(x)在x=1處取得極值
(1)求b的值;
(2)若當x∈[-1,2]時,f(x)<c2恒成立,求c的取值范圍;
(3)對任意的x1,x2∈[-1,2],|f(x1)-f(x2)|≤0是否恒成立?如果成立,給出證明;如果不成立,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知⊙O1與⊙O2的半徑都等于1,圓心距為4,過動點P分別作⊙O1與⊙O2的切線,切點為M、N且使得PM=PN,求點P的軌跡方程.

查看答案和解析>>

同步練習冊答案