【題目】如圖,在正三棱柱中,所有棱長都等于.

(1)當點的中點時,

①求異面直線所成角的余弦值;

②求二面角的正弦值;

(2)當點在線段上(包括兩個端點)運動時,求直線與平面所成角的正弦值的取值范圍.

【答案】(1); (2).

【解析】

(1)建立空間直角坐標系,利用異面直線所成角和二面角的求解方法求解;

(2)設出M的坐標,利用空間向量求出線面角的目標式,結合目標式的特征求解范圍.

(1)取的中點為建立空間直角坐標系,

的中點時,則

設異面直線所成角為=

設平面的一個法向量為

所以

設平面的一個法向量為

設二面角的平面角為,

所以

(2)當上運動時,設

設直線與平面所成的角為

所以

直線與平面所成的角的正弦值的取值范圍為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖1,在邊長為2的正方形ABCD中,P為CD中點,分別將△PAD, △PBC沿 PA,PB所在直線折疊,使點C與點D重合于點O,如圖2.在三棱錐P-OAB中,E為 PB中點.

(Ⅰ)求證:PO⊥AB;

(II)求直線BP與平面POA所成角的正弦值;

(Ⅲ)求二面角P-AO-E的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等差數(shù)列{an}的各項均為正數(shù),a1=1,前n項和為Sn.數(shù)列{bn}為等比數(shù)列,b1=1,且b2S2=6,b2S3=8.

(1)求數(shù)列{an}與{bn}的通項公式;

(2)求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(2017·全國Ⅱ卷)如圖,四棱錐PABCD中,側面PAD為等邊三角形且垂直于底面ABCD,ABBCAD,BADABC90°EPD的中點.

(1)證明:直線CE∥平面PAB;

(2)M在棱PC上,且直線BM與底面ABCD所成角為45°,求二面角MABD的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的前項和為, ,數(shù)列滿足在直線上.

(1)求數(shù)列, 的通項

(2)令,求數(shù)列的前項和;

(3)若,求對所有的正整數(shù)都有成立的的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若直線l1l2是異面直線,l1α,l2βα∩β=l,則下列命題正確的是( 。

A. l至少與,中的一條相交B. l,都相交

C. l至多與,中的一條相交D. l,都不相交

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中,D,EF分別是邊,中點,下列說法正確的是(

A.

B.

C.,則的投影向量

D.若點P是線段上的動點,且滿足,則的最大值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中,根據(jù)條件,判斷的形狀.

1;

2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】1)要得到的圖像,只需要把函數(shù)的圖像上的對應點的橫坐標_________,縱坐標_________;

2)要得到的圖像,只需要把函數(shù)的圖像上的對應點的橫坐標_________,縱坐標___________

查看答案和解析>>

同步練習冊答案