【題目】已知某企業(yè)近3年的前7個月的月利潤(單位:百萬元)如下面的折線圖所示:

1)試問這3年的前7個月中哪個月的月平均利潤最高?

2)通過計算判斷這3年的前7個月的總利潤的發(fā)展趨勢;

3)試以第3年的前4個月的數(shù)據(jù)(如下表),用線性回歸的擬合模式估測第38月份的利潤.

月份x

1

2

3

4

利潤y(單位:百萬元)

4

4

6

6

相關(guān)公式: ,

【答案】(1)5月和6月的平均利潤最高(2)詳見解析(3)940萬元.

【解析】試題分析:

(1)由折線圖,通過計算每個月的平均利潤可得;

(2)分別計算出第1、2、3年前七個月的總利潤,由計算結(jié)果即可分析趨勢;

(3)由題意將數(shù)據(jù)代入公式,列出回歸方程求解即可。

試題解析:

(1)由折線圖可知5月和6月的平均利潤最高.

(2)第1年前7個月的總利潤為(百萬元),

第2年前7個月的總利潤為(百萬元),

第3年前7個月的總利潤為(百萬元),

所以這3年的前7個月的總利潤呈上升趨勢.

(3)∵, , ,

,

,

,

當(dāng)時, (百萬元),∴估計8月份的利潤為940萬元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=Acos2(ωx+φ)+1(A>0,ω>0)的最大值為3,f(x)的圖象在y軸上的截距為2,其相鄰兩對稱軸間的距離為1,則f(1)+f(2)+f(3)+…+f(100)=(  )
A.0
B.100
C.150
D.200

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),有如下結(jié)論

①函數(shù)f(x)的值域是[-1,1];

②函數(shù)f(x)的減區(qū)間為[1,3];

③若存在實數(shù)x1、x2、x3、x4,滿足x1<x2<x3<x4,且f(x1)=f(x2)=f(x3)=f(x4),則x1+x2<0;

④在③的條件下x3+x4=6;

⑤若方程f(x)=a有3個解,則<a≤1

其中正確的是

A. ①②③ B. ③④⑤ C. ②③⑤ D. ①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的離心率為 ,它的一個焦點到短軸頂點的距離為2,動直線l:y=kx+m交橢圓E于A、B兩點,設(shè)直線OA、OB的斜率都存在,且
(1)求橢圓E的方程;
(2)求證:2m2=4k2+3;
(3)求|AB|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直線l1 , l2分別過點A(3 ,2),B( ,6),它們分別繞點A,B旋轉(zhuǎn),但始終保持l1⊥l2 . 若l1與l2的交點為P,坐標(biāo)原點為O,則線段OP長度的取值范圍是( )
A.[3,9]
B.[3,6]
C.[6,9]
D.[9,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某縣政府為了引導(dǎo)居民合理用水,決定全面實施階梯水價,階梯水價原則上以住宅(一套住宅為一戶)的月用水量為基準(zhǔn)定價:若用水量不超過12噸時,按4/噸計算水費;若用水量超過12噸且不超過14噸時,超過12噸部分按6.60/噸計算水費;若用水量超過14噸時,超過14噸部分按7.80/噸計算水費.為了了解全市居民月用水量的分布情況,通過抽樣,獲得了100戶居民的月用水量(單位:噸),將數(shù)據(jù)按照,,…,分成8組,制成了如圖1所示的頻率分布直方圖.

(圖1) (圖2)

Ⅰ)通過頻率分布直方圖,估計該市居民每月的用水量的平均數(shù)和中位數(shù)(精確到0.01);

求用戶用水費用(元)關(guān)于月用水量(噸)的函數(shù)關(guān)系式;

Ⅲ)如圖2是該縣居民李某20171~6月份的月用水費(元)與月份的散點圖,其擬合的線性回歸方程是.若李某20171~7月份水費總支出為294.6元,試估計李某7月份的用水噸數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義“等和數(shù)列”:在一個數(shù)列中,如果每一個項與它的后一項的和都為同一個常數(shù),那么這個數(shù)列就叫做“等和數(shù)列”,這個常數(shù)叫做公和.已知數(shù)列{an}是等和數(shù)列,且a1=2,公和為6,求這個數(shù)列的前n項的和S=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知圓M過點P(10,4),且與直線4x+3y-20=0相切于點A(2,4)

(1)求圓M的標(biāo)準(zhǔn)方程;

(2)設(shè)平行于OA的直線l與圓M相交于B、C兩點,且,求直線l的方程;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}中,a1=1,a2n=n﹣an , a2n+1=an+1,則a1+a2+a3+…+a100=

查看答案和解析>>

同步練習(xí)冊答案