精英家教網 > 高中數學 > 題目詳情

已知函數f(x)的定義域為[0,1],且同時滿足:①f(1)=3;②f(x)≥2對一切x∈[0,1]恒成立;③若x1≥0,x2≥0,x1+x2≤1,則有f(x1+x2)≥f(x1)+f(x2)-2
(1)求f(0)的值
(2)設s,t∈[0,1],且s<t,求證:f(s)≤f(t)
(3)試比較數學公式數學公式(n∈N)的大;
(4)某同學發(fā)現,當數學公式(n∈N)時,有f(x)<2x+2,由此他提出猜想:對一切x∈(0,1],都有f(x)<2x+2,請你判斷此猜想是否正確,并說明理由.

解:(1)由③,令x1=x2=0,f(0)≥f(0)+f(0)-2,∴f(0)≤2
又f(0)≥2,則f(0)=2;
(2)設s,t∈[0,1],且s<t,則t-s∈[0,1].
∴f(t)=f[(t-s)+s]≥f(t-s)+f(s)-2.
∴f(t)-f(s)≥f(t-s)-2≥0.∴f(t)≤f(s).
(3)在③中,令x1=x2=,得 (8分)

. (11分)
(Ⅲ)對x∈[0,1],總存在n∈N,滿足 <x≤. (13分)
由(Ⅰ)與(Ⅱ),得 ,又2x+2>2•+2=+2.
∴f(x)<x+2.
綜上所述,對任意x∈[0,1].f(x)<x+2恒成立. (16分)
分析:(1)由③,令x1=x2=0,結合f(0)≥2可求f(0)的值
(2)設s,t∈[0,1],且s<t,則t-s∈[0,1].從而f(t)=f[(t-s)+s]≥f(t-s)+f(s)-2,故f(t)-f(s)≥f(t-s)-2≥0.可得f(t)≤f(s).
(3)題中條件:f(x1+x2)≥f(x1)+f(x2)-2,令x1=x2=,得 ,利用它進行放縮,可證得答案,
(4)因為由題意可得:對x∈[0,1],總存在n∈N,滿足 <x≤.結合(I)、(II)可證得(III).
點評:本題考查了抽象函數,抽象函數是相對于給出具體解析式的函數來說的,它雖然沒有具體的表達式,但是有一定的對應法則,滿足一定的性質,這種對應法則及函數的相應的性質是解決問題的關鍵.抽象函數的抽象性賦予它豐富的內涵和多變的思維價值,可以考查類比猜測,合情推理的探究能力和創(chuàng)新精神.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=log3
3
x
1-x
,M(x1,y1),N(x2,y2)
是f(x)圖象上的兩點,橫坐標為
1
2
的點P滿足2
OP
=
OM
+
ON
(O為坐標原點).
(Ⅰ)求證:y1+y2為定值;
(Ⅱ)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,其中n∈N*,且n≥2,求Sn
(Ⅲ)已知an=
1
6
,                          n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
,其中n∈N*,Tn為數列{an}的前n項和,若Tn<m(Sn+1+1)對一切n∈N*都成立,試求m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

下列說法正確的有( 。﹤.
①已知函數f(x)在(a,b)內可導,若f(x)在(a,b)內單調遞增,則對任意的?x∈(a,b),有f′(x)>0.
②函數f(x)圖象在點P處的切線存在,則函數f(x)在點P處的導數存在;反之若函數f(x)在點P處的導數存在,則函數f(x)圖象在點P處的切線存在.
③因為3>2,所以3+i>2+i,其中i為虛數單位.
④定積分定義可以分為:分割、近似代替、求和、取極限四步,對求和In=
n
i=1
f(ξi)△x
中ξi的選取是任意的,且In僅于n有關.
⑤已知2i-3是方程2x2+px+q=0的一個根,則實數p,q的值分別是12,26.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=sin(2x-
π
6
),g(x)=sin(2x+
π
3
),直線y=m與兩個相鄰函數的交點為A,B,若m變化時,AB的長度是一個定值,則AB的值是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(Ⅰ)已知函數f(x)=x3-x,其圖象記為曲線C.
(i)求函數f(x)的單調區(qū)間;
(ii)證明:若對于任意非零實數x1,曲線C與其在點P1(x1,f(x1))處的切線交于另一點P2(x2,f(x2)),曲線C與其在點P2(x2,f(x2))處的切線交于另一點P3(x3,f(x3)),線段P1P2,P2P3與曲線C所圍成封閉圖形的面積記為S1,S2.則
S1S2
為定值;
(Ⅱ)對于一般的三次函數g(x)=ax3+bx2+cx+d(a≠0),請給出類似于(Ⅰ)(ii)的正確命題,并予以證明.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=x3-ax+b存在極值點.
(1)求a的取值范圍;
(2)過曲線y=f(x)外的點P(1,0)作曲線y=f(x)的切線,所作切線恰有兩條,切點分別為A、B.
(。┳C明:a=b;
(ⅱ)請問△PAB的面積是否為定值?若是,求此定值;若不是求出面積的取值范圍.

查看答案和解析>>

同步練習冊答案