設(shè)等比數(shù)列的前項(xiàng)和為,已知成等差數(shù)列,(1)求數(shù)列的公比,(2)若,求,并討論的最大值
(1),(2)的最大值為4
解析試題分析:(1)特殊數(shù)列求解方法一般為待定系數(shù)法. 因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/8a/6/1znrx2.png" style="vertical-align:middle;" />,以即,此處不用求和公式是為了避免討論的情況,(2)由(1)已知公比,因此由得,當(dāng)為奇數(shù)時(shí)為單調(diào)減函數(shù),,當(dāng)為偶數(shù)時(shí),為單調(diào)增函數(shù),所以,由于所以的最大值為4.
解 (1)由已知得 即 5分
(用求和公式不討論扣2分)
(2)由得
10分
當(dāng)為奇數(shù)時(shí) 12分
當(dāng)為偶數(shù)時(shí) 14分
所以的最大值為4 15分
考點(diǎn):等比數(shù)列,前項(xiàng)和最值
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知向量,n∈N*,向量與垂直,且a1=1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿(mǎn)足bn=log2an+1,求數(shù)列{an·bn}的前n項(xiàng)和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
數(shù)列中,,前項(xiàng)的和是,且,.
(1)求出
(2)求數(shù)列的通項(xiàng)公式;
(3)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)數(shù)列{}的前n項(xiàng)和為,且.
⑴證明數(shù)列{}為等比數(shù)列
⑵求{}的前n項(xiàng)和
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(2011•山東)等比數(shù)列{an}中,a1,a2,a3分別是下表第一、二、三行中的某一個(gè)數(shù),且其中的任何兩個(gè)數(shù)不在下表的同一列.
| 第一列 | 第二列 | 第三列 |
第一行 | 3 | 2 | 10 |
第二行 | 6 | 4 | 14 |
第三行 | 9 | 8 | 18 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=2an-2(n∈N*),在數(shù)列{bn}中,b1=1,點(diǎn)P(bn,bn+1)在直線x-y+2=0上.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)記Tn=a1b1+a2b2+ +anbn,求Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)數(shù)列的前項(xiàng)和為,且,其中是不為零的常數(shù).
(1)證明:數(shù)列是等比數(shù)列;
(2)當(dāng)時(shí),數(shù)列滿(mǎn)足,,求數(shù)列的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知等比數(shù)列{an}滿(mǎn)足an+1+an=9·2n-1,n∈N*.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,若不等式Sn>kan-2對(duì)一切n∈N*恒成立,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com