△ABC中,點D在邊AB上,CD平分∠ACB,CB=1,CA=3,
CA
CB
=2,則CD=(  )
A、
30
4
B、
6
2
C、
15
8
D、
3
2
考點:平面向量數(shù)量積的運算
專題:平面向量及應(yīng)用
分析:利用向量的數(shù)量積,求出cos∠ACB,再利用倍角公式,求出cos∠ACE,結(jié)合三角形的相關(guān)知識,即可求出CD.
解答: 解:延長CB至點F,使CF=CA=3,連接AF,并延長CD交AF于點E,過點E作AB的平行線交CF于H.
CA
CB
=2,CB=1,CA=3

cos∠ACB=
2
3

∠ACE=
1
2
∠ACB

cos2∠ACE=
1+cos∠ACB
2
=
5
6

∵∠ACE為銳角
cos∠ACE=
30
6

∵CD平分∠ACB,CA=CF=3
∴CE⊥AF,AE=EF
又∵EH∥BD
∴CD=
1
2
CE
∵CE=AC×cos∠ACE=
30
6
=
30
2

CD=
30
4

故選:A
點評:本題考察了向量的數(shù)量積的定義及相關(guān)公式,結(jié)合倍角公式和三角形的相關(guān)知識,有一定的難度,屬于難題!
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知PA是⊙O的切線,A為切點.PC是⊙O的一條割線,交⊙O于B,C兩點,點Q是弦BC的中點.若圓心O在∠APB內(nèi)部,則∠OPQ+∠PAQ的度數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列語句中是簡單命題是( 。
A、
3
不是有理數(shù)
B、△ABC是等腰直角三角形
C、負(fù)數(shù)的平方是正數(shù)
D、3x+2<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三條不重合的直線m,n,l和兩個不重合的平面α、β,下列命題中正確命題個數(shù)為( 。
①若m∥n,n?α,則m∥α;②若l⊥α,m⊥β且l⊥m則α⊥β
③若l⊥n,m⊥n,則l∥m④若α⊥β,α∩β=m,n?β,n⊥m,則n⊥α
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=sin2x-sin(2x+
π
3
)的最小值為(  )
A、0
B、-1
C、-
2
D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的一個焦點作實軸的垂線,交雙曲線于A,B兩點,若線段AB的長度恰等于焦距,則雙曲線的離心率為(  )
A、
5
+1
2
B、
10
2
C、
17
+1
4
D、
22
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在下列四個命題中
①y=1是冪函數(shù);
②“x<1”是“x<2”的充分不必要條件;
③命題“存在x∈R,x2-2>0”的否定是:“任意x∈R,x2-x<0”
④若a=-1,則函數(shù)f(x)=ax2+2x-1只有一個零點.
其中錯誤的個數(shù)有( 。﹤.
A、4B、2C、3D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x||2x+1|>3},集合B={x|y=
x+1
x-2
}
,則A∩(∁RB)=( 。
A、(1,2)
B、(1,2]
C、(1,+∞)
D、[1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

靖國神社是日本軍國主義的象征.中國人民珍愛和平,所以要堅決反對日本軍國主義.2013年12月26日日本首相安倍晉三悍然參拜靖國神社,此舉在世界各國激起輿論的批評.某報的環(huán)球輿情調(diào)查中心對中國大陸七個代表性城市的550個普通民眾展開民意調(diào)查.某城市調(diào)查體統(tǒng)計結(jié)果如下表:
                    性別
中國政府是否
需要在釣魚島和其他爭議
問題上持續(xù)對日強硬
需要 50 250
不需要 100 150
(Ⅰ)試估計這七個代表性城市的普通民眾中,認(rèn)為“中國政府需要在釣魚島和其他爭議問題上持續(xù)對日強硬”的民眾所占比例;
(Ⅱ)能否有99.9%以上的把握認(rèn)為這七個代表性城市的普通民眾的民意與性別有關(guān)?
(Ⅲ)從被調(diào)查認(rèn)為“中國政府需要在釣魚島和其他爭議問題上持續(xù)對日強硬”的民眾中,采用分層抽樣的方式抽取6人做進一步的問卷調(diào)查,然后在這6人中用簡單隨機抽樣方法抽取2人進行電視專訪,記被抽到的2人中女性的人數(shù)為X,求X的分布列.
P(K2≥k) 0.050 0.010 0.001
k 3.841 6.635 10.828
附:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

查看答案和解析>>

同步練習(xí)冊答案