若將函數(shù)f(x)=sin2x+cos2x的圖象向左平移φ個單位,得到偶函數(shù),則φ的最小正值是( 。
A、
π
8
B、
π
4
C、
8
D、
4
考點:函數(shù)y=Asin(ωx+φ)的圖象變換
專題:三角函數(shù)的圖像與性質(zhì)
分析:把函數(shù)式f(x)=sin2x+cos2x化積為f(x)=
2
sin(2x+
π
4
),然后利用三角函數(shù)的圖象平移得到y(tǒng)=
2
sin(2x+
π
4
+2φ).結(jié)合該函數(shù)為偶函數(shù)求得φ的最小正值.
解答: 解:由f(x)=sin2x+cos2x=
2
sin(2x+
π
4
),
把該函數(shù)的圖象左移φ個單位,所得圖象對應(yīng)的函數(shù)解析式為:
y=
2
sin[2(x+φ)+
π
4
]=
2
sin(2x+
π
4
+2φ).
又偶函數(shù)圖象關(guān)于y軸對稱,則
π
4
+2φ=kπ+
π
2
,k∈Z.
則φ=
2
+
π
8
,k∈Z.
∴當k=0時,φ有最小正值是
π
8

故選:A.
點評:本題考查了三角函數(shù)的圖象平移,考查了三角函數(shù)奇偶性的性質(zhì),是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列既是偶函數(shù),又在(0,+∞)單調(diào)遞增的函數(shù)是( 。
A、y=2-|x|
B、y=log2x2
C、y=x2+x
D、y=cosx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓心在y軸上,且與直線2x+3y-10=0相切于點A(2,2)的圓的方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知冪函數(shù)y=(m2-5m-5)x2m+1在(0,+∞)單調(diào)遞減,則實數(shù)m=(  )
A、1B、-1C、6D、-1或6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=3+ax-1,(a>0且a≠1)的圖象恒過定點
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示的對應(yīng)中,是從A到B的映射有
 
(填序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x2+1(x>0)
cosx(x≤0)
,則下列結(jié)論正確的是( 。
A、f(x)是偶函數(shù)
B、f(x)在f(x)上是增函數(shù)
C、f(x)是周期函數(shù)
D、f(x)的值域為[-1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

2cos20°-1
cos20°sin220°
的值為(  )
A、
3
-1
B、2-
3
C、4
D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x+1)是偶函數(shù),當x∈(-∞,1)時,函數(shù)f(x)單調(diào)遞減,設(shè)a=f(-
1
2
),b=f(-1),c=f(2),a=f(-
1
2
),b=f(-1),c=f(2),則a,b,c的大小關(guān)系為
 

查看答案和解析>>

同步練習(xí)冊答案