【題目】已知函數(shù), ,(其中, 為自然對(duì)數(shù)的底數(shù), ……).
(1)令,若對(duì)任意的恒成立,求實(shí)數(shù)的值;
(2)在(1)的條件下,設(shè)為整數(shù),且對(duì)于任意正整數(shù), ,求的最小值.
【答案】(1);(2).
【解析】試題分析:(1)由對(duì)任意的恒成立,即,利用導(dǎo)數(shù)討論函數(shù)的單調(diào)性,求出最小值,即可得到實(shí)數(shù)的值;(2)由(1)知,即,
令(, )則,所以,令,求和后利用放縮法可得,從而可得的最小值.
所以,.
試題解析:(1)因?yàn)?/span>
所以,
由對(duì)任意的恒成立,即,
由,
(i)當(dāng)時(shí), , 的單調(diào)遞增區(qū)間為,
所以時(shí), ,
所以不滿(mǎn)足題意.
(ii)當(dāng)時(shí),由,得
時(shí), , 時(shí), ,
所以在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,
所以的最小值為 .
設(shè),所以,①
因?yàn)?/span>
令得,
所以在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,
所以,②
由①②得,則.
(2)由(1)知,即,
令(, )則,
所以,
所以
,
所以,
又,
所以的最小值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(1)當(dāng)時(shí),求的極值;
(2)如果≥在上恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某班有24名男生和26名女生,數(shù)據(jù)a1 , a2 , …,a50是該班50名學(xué)生在一次數(shù)學(xué)學(xué)業(yè)水平模擬考試的成績(jī),下面的程序用來(lái)同時(shí)統(tǒng)計(jì)全班成績(jī)的平均數(shù):A,男生平均分:M,女生平均分:W;為了便于區(qū)別性別,輸入時(shí),男生的成績(jī)用正數(shù),女生的成績(jī)用其成績(jī)的相反數(shù),那么在圖里空白的判斷框和處理框中,應(yīng)分別填入下列四個(gè)選項(xiàng)中的( )
A.T>0?,
B.T<0?, ??
C.T<0?,
D.T>0?,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱柱ABC﹣A1B1C1中,已知BC=1,BB1=2,∠BCC1=90°,AB⊥側(cè)面BB1CC1 .
(1)求直線(xiàn)C1B與底面ABC所成角的正弦值;
(2)在棱CC1(不包含端點(diǎn)C,C1)上確定一點(diǎn)E的位置,使得EA⊥EB1(要求說(shuō)明理由).
(3)在(2)的條件下,若AB= ,求二面角A﹣EB1﹣A1的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于x的不等式x2﹣2ax﹣8a2<0(a>0)的解集為(x1 , x2),且:x2﹣x1=15,則a=( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列四個(gè)命題:
①若,則;
②若是不共線(xiàn)的四點(diǎn),則是四邊形為平行四邊形的充要條件;
③若, ,則;
④的充要條件是且
其中正確命題的序號(hào)是( )
A. ①② B. ②③ C. ③④ D. ②④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com