在中,角所對(duì)的邊分別是,已知.
(Ⅰ)求;
(Ⅱ)若,且,求的面積.
(Ⅰ);(Ⅱ).
【解析】
試題分析:本題主要考查解三角形中的正弦定理和余弦定理的應(yīng)用,以及利用邊和夾角的正弦求三角形的面積.第一問由正弦定理把邊轉(zhuǎn)化為角,在等式兩邊消元時(shí),注意消去的;第二問,利用余弦定理和第一問的結(jié)論先求出邊長(zhǎng),利用求三角形面積.
試題解析:(Ⅰ)由已知及正弦定理,有,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013103123075812574874/SYS201310312308347952144470_DA.files/image003.png">,解得,. 6分
(Ⅱ)由余弦定理及,解得.故的面積. 12分
考點(diǎn):1.正弦定理;2.余弦定理;3.三角形面積公式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2015屆廣東東莞南開實(shí)驗(yàn)學(xué)校高二上期中文數(shù)學(xué)卷(解析版) 題型:填空題
在中,角所對(duì)的邊分別為,若,,,則 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年貴州省第五校高三第五次聯(lián)考理科數(shù)學(xué)(暨遵義四中13次月考) 題型:解答題
在中,角所對(duì)的邊分別為.向量,
.已知,.
(Ⅰ)求的大。
(Ⅱ)判斷的形狀并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年普通高等學(xué)校招生全國(guó)統(tǒng)一考試(重慶卷)數(shù)學(xué)理工類模擬試卷(一) 題型:解答題
在中,角所對(duì)的邊分別為,且滿足,.
(Ⅰ)求的面積;
(Ⅱ)若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011年遼寧省瓦房店市高一下學(xué)期期末聯(lián)考文科數(shù)學(xué) 題型:解答題
(本小題滿分12分)
在中,角所對(duì)的邊分別為,滿足,且的面積為.
(1)求的值;
(2)若,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com