求經(jīng)過(guò)橢圓
x2
16
+
y2
12
=1的左焦點(diǎn),且平行于直線x+2y-4=0的直線方程.
考點(diǎn):橢圓的簡(jiǎn)單性質(zhì),直線的一般式方程
專題:圓錐曲線的定義、性質(zhì)與方程
分析:求出橢圓的左焦點(diǎn)坐標(biāo),直線的斜率,利用點(diǎn)斜式方程求解即可.
解答: 解:橢圓
x2
16
+
y2
12
=1的左焦點(diǎn),(-2,0).
直線x+2y-4=0的斜率為:-
1
2

經(jīng)過(guò)橢圓
x2
16
+
y2
12
=1的左焦點(diǎn),且平行于直線x+2y-4=0的直線方程:y=-
1
2
(x+2),
即x+2y+2=0.
點(diǎn)評(píng):本題考查橢圓的基本性質(zhì),直線與直線的平行,直線的點(diǎn)斜式方程的求法,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若直線y=kx+1與曲線y=
1-(x-2)2
有公共點(diǎn),則k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)對(duì)一切m、n∈R都有:f(m+n)=f(m)+f(n)-2,并且當(dāng)x>0時(shí),f(x)>2.
(1)判定并證明函數(shù)f(x)在R上的單調(diào)性;
(2)若f(3)=5,求不等式f(a2-2a-2)<3的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A中有10個(gè)元素,集合B中有8個(gè)元素,集合A∩B中共有4個(gè)元素,則集合A∪B中共有( 。﹤(gè)元素.
A、14B、16C、18D、不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)為奇函數(shù),g(x)為偶函數(shù),且滿足f(x)+g(x)=x2+x+1,求f(x)和g(x)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(2x+3)=x-1,則f(x)=
 
,f(x-1)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將圓周上的任意點(diǎn)均染成黑色或白色,對(duì)任意一種染色方法.
(1)是否一定存在一個(gè)直角三角形,其頂點(diǎn)同色,證明你的結(jié)論;
(2)證明:存在一個(gè)等腰三角形,其頂點(diǎn)同色.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知奇函數(shù)f(x)在R上單調(diào)遞減,若滿足f(a-1)+f(2a)>0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC中,∠C=90°,CD⊥AB于D,作∠CDE=∠CDF=α,交AC于F,交BC于E.請(qǐng)問(wèn)當(dāng)α為何值時(shí),△DEF的面積最大并求出最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案