19.命題“對任意的x∈R,x2-x+1≥0”的否定是( 。
A.不存在x0∈R,x02-2x0+1≥0B.存在x0∈R,x02-2x0+1≤0
C.存在x0∈R,x02-2x0+1<0D.對任意的x∈R,x2-2x+1<0

分析 根據(jù)含量詞的命題的否定形式:將“任意”換為“存在”,同時將結(jié)論否定,得到命題的否定.

解答 解:命題“對任意的X∈R,x2-x+1≥0”的否定是
“存在x0∈R,x02-2x0+1<0”
故選:C

點評 求含量詞的命題的否定:一般先將量詞“任意”與“存在”交換,同時將結(jié)論否定即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知數(shù)列{an}滿足a1=1,a2=r(r>0),且{anan+1}是公比為q(q>0)的等比數(shù)列,設(shè)bn=a2n-1+a2n(n∈N*),
(1)求使anan+1+an+1an+2>an+2an+3(n∈N*)成立的q的取值范圍;
(2)求數(shù)列{bn}的前n項和Sn;
(3)試證明:當(dāng)q≥2時,對任意正整數(shù)n≥2,Sn不可能是數(shù)列{bn}中的某一項.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.設(shè)z=1+i,則|$\overline{z}$-3|=$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知集合A={x|x2-2x-3<0},B={x|(x-m+1)(x-m-1)≥0},
(Ⅰ)當(dāng)m=0時,求A∩B.
(Ⅱ)若p:x2-2x-3<0,q:(x-m+1)(x-m-1)≥0,且q是p的必要不充分條件,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)f(x)=1+x-$\frac{{x}^{2}}{2}$+$\frac{{x}^{3}}{3}$-$\frac{{x}^{4}}{4}$+…+$\frac{{x}^{2015}}{2015}$,g(x)=1-x+$\frac{{x}^{2}}{2}$-$\frac{{x}^{3}}{3}$+$\frac{{x}^{4}}{4}$+…-$\frac{{x}^{2015}}{2015}$,設(shè)函數(shù)F(x)=f(x+3)•g(x-4),且函數(shù)的所有零點均在[a,b](a,b∈Z)內(nèi),則b-a的最小值為( 。
A.6B.8C.9D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.如圖,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某多面體的三視圖,則該多面體的表面積為( 。
A.20+3$\sqrt{2}$B.16+8$\sqrt{2}$C.18+3$\sqrt{5}$D.18+6$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知各項均為正數(shù)的數(shù)列{an}的前n項和為Sn,且Sn滿足n(n+1)Sn2+(n2+n-1)Sn-1=0(n∈N*),則S1+S2+…+S2017=$\frac{2017}{2018}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知p:x2-8x-20≤0;q:x2-2x+1-m2≤0(m>0);若¬p是¬q的充分而不必要條件,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.定義在R上的函數(shù)f(x)的圖象關(guān)于y軸對稱,且f(x)在[0,+∞)上單調(diào)遞減,若關(guān)于x的不等式f(2mx-lnx-3)≥2f(3)-f(-2mx+lnx+3)在x∈[1,3]上恒成立,則實數(shù)m的取值范圍為( 。
A.[$\frac{1}{2e}$,$\frac{ln6+6}{6}$]B.[$\frac{1}{e}$,$\frac{ln6+6}{3}$]C.[$\frac{1}{e}$,$\frac{ln3+6}{3}$]D.[$\frac{1}{2e}$,$\frac{ln3+6}{6}$]

查看答案和解析>>

同步練習(xí)冊答案