已知一扇形的圓心角為α,半徑為R,弧長為l.
(1)若α=60°,R=10cm,求扇形的弧長l.
(2)若扇形的周長為20cm,當(dāng)扇形的圓心角α為多少弧度時,這個扇形的面積最大?
考點:弧度制的應(yīng)用
專題:計算題,三角函數(shù)的求值
分析:根據(jù)扇形的弧長公式和面積公式可以直接求值.
解答: 解:(1)扇形的弧長l=
nπR
180
=
10π
3
cm.
(2)扇形的弧長為 L=20-2r,其中r為半徑,
面積S=
(20-2r)r
2

=-r2+10r
=-(r-5)2+25
即當(dāng)r=5時,扇形面積最大為25,這時圓心角α=L/r=(20-10)/5=2 rad
點評:本題考查扇形的弧長公式和面積公式,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知平面向量
a
,
b
c
滿足|
a
|=1,|
b
|=2,|
c
|=3,且
a
,
b
,
c
兩兩所成的角相等,則|
a
+
b
+
c
|等于( 。
A、
3
B、6
C、6或
2
D、6或
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=
3
5
,an=2-
1
an-1
(n≥2,n∈N+).
(Ⅰ)求證:數(shù)列{
1
an-1
}為等差數(shù)列;
(Ⅱ)求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義域為R的奇函數(shù),當(dāng)x≥0時,f(x)=x2-2x.
(1)求函數(shù)f(x)的解析式,并在給出的直角坐標(biāo)系中畫出y=f(x)的圖象;
(2)若函數(shù)f(x)在區(qū)間[m,2m2-m]上單調(diào)遞減,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集R,集合A={x||x-3|>6},B={x||x|>a,a∈N+},當(dāng)a為何值時,
(1)A是B的充分而不必要條件;
(2)A是B的必要而不充分條件;
(3)A是B的充要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

列三角形數(shù)表

假設(shè)第n行的第二個數(shù)為an(n≥2,n∈N*
(1)依次寫出第六行的所有數(shù)字;
(2)歸納出an+1與an的關(guān)系式并求出an的通項公式;
(3)設(shè)anbn=1求證:b2+b3+…+bn<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有4個不同的球,四個不同的盒子,把球全部放入盒內(nèi)(結(jié)果用數(shù)字表示).
(1)共有多少種放法?
(2)恰有一個盒子不放球,有多少種放法?
(3)恰有一個盒內(nèi)放2個球,有多少種放法?
(4)恰有兩個盒不放球,有多少種放法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)命題p:“已知x2-mx+1>0對?x∈R恒成立”,命題q:“不等式x2<9-m2有實數(shù)解”,若¬p且q為真命題,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+
16
x
-1.
(1)判斷函數(shù)f(x)在[2,4]上的單調(diào)性并證明;
(2)求函數(shù)f(x)在[2,4]上的最值.

查看答案和解析>>

同步練習(xí)冊答案