分析 推導(dǎo)出$\frac{{S}_{n}}{n}={a}_{1}+\frac{n-1}{2}d$,由$\frac{{S}_{10}}{10}-\frac{{S}_{8}}{8}$=2,得公差d=2,由此能求出結(jié)果.
解答 解:∵${S}_{n}=n{a}_{1}+\frac{n(n-1)}{2}d$,∴$\frac{{S}_{n}}{n}={a}_{1}+\frac{n-1}{2}d$,
∵$\frac{{S}_{10}}{10}-\frac{{S}_{8}}{8}$=2,∴d=2,
∴S2017=2017×(-2017)+2017×2016=-2017.
故答案為:-2017.
點評 本題考查等差數(shù)列的前2017項和的求法,涉及到等差數(shù)列的性質(zhì)等基礎(chǔ)知識,考查推理論證能力、運算求解能力,考查函數(shù)與方程思想,是基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $({-\frac{1}{16},0})$ | B. | $({-\frac{1}{4},0})$ | C. | $({-\frac{1}{8},0})$ | D. | $({-\frac{1}{2},0})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)是奇函數(shù),且為減函數(shù) | B. | f(x)是偶函數(shù),且為增函數(shù) | ||
C. | f(x)不是奇函數(shù),也不為減函數(shù) | D. | f(x)不是偶函數(shù),也不為增函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{6}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-2)∪(2,+∞) | B. | (-∞,-1)∪(1,+∞) | C. | (-2,2) | D. | (-1,1) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com