A. | -2 | B. | 0 | C. | 2 | D. | 4 |
分析 以A為坐標原點,建立平面直角坐標系,推導出B($\frac{1}{t}$,0),C(0,t),P(1,1),從而$\overrightarrow{PB}$=($\frac{1}{t}-1$,-1),$\overrightarrow{PC}$=(-1,t-1),由此能求出$\overrightarrow{PB}$$•\overrightarrow{PC}$的最大值.
解答 解:以A為坐標原點,建立平面直角坐標系,如圖所示,
∵$\overrightarrow{AB}$⊥$\overrightarrow{AC}$,|$\overrightarrow{AB}$|=$\frac{1}{t}$,|$\overrightarrow{AC}$|=t,∴B($\frac{1}{t}$,0),C(0,t),
∵P點是△ABC所在平面內(nèi)一點,且$\overrightarrow{AP}$=$\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|}$+$\frac{\overrightarrow{AC}}{|\overrightarrow{AC}|}$,
∴$\overrightarrow{AP}$=(1,0)+(0,1)=(1,1),即P(1,1),
∴$\overrightarrow{PB}$=($\frac{1}{t}-1$,-1),$\overrightarrow{PC}$=(-1,t-1),
∴$\overrightarrow{PB}•\overrightarrow{PC}$=-$\frac{1}{t}$+1-t+1=2-($\frac{1}{t}+t$),
∵$\frac{1}{t}+t≥2\sqrt{\frac{1}{t}•t}$=2,
∴$\overrightarrow{PB}$$•\overrightarrow{PC}$的最大值等于0,
當且僅當t=$\frac{1}{t}$,即t=1時,取等號.
故選:B.
點評 本題考查向量的數(shù)量積的最大值的求法,是基礎(chǔ)題,解題時要認真審題,注意平面向量坐標運算法則的合理運用.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (0,1] | B. | [1,2] | C. | [$\frac{2}{3}$,2] | D. | [$\frac{2}{3}$,$\frac{4}{3}$] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{2}{3}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $(\frac{4}{9},\frac{8}{9})$ | B. | $(\frac{2}{9},\frac{4}{9})$ | C. | (2,0) | D. | (9,0) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com