(幾何證明選講選做題)如圖,已知點(diǎn)D在圓O直徑AB的延長(zhǎng)線上,過(guò)D作圓O的切線,切點(diǎn)為C.若CD=
3
,BD=1
,則圓O的面積為
 

(坐標(biāo)系與參數(shù)方程選做題)在直角坐標(biāo)系xOy中,曲線l的參數(shù)方程為
x=t
y=3+t.
(t
為參數(shù));以原點(diǎn)O為極點(diǎn),以x軸的正半軸為極軸建立極坐標(biāo)系ρOθ,則曲線l的極坐標(biāo)方程為
 
考點(diǎn):簡(jiǎn)單曲線的極坐標(biāo)方程
專(zhuān)題:直線與圓,立體幾何,坐標(biāo)系和參數(shù)方程
分析:①如圖所示,連接OC,利用切線的性質(zhì)可得:OC⊥CD.設(shè)⊙O的半徑為r,利用勾股定理可得:OC2+CD2=OD2,即r2+(
3
)2=(r+1)2
,解得r即可.即可得到⊙O的面積S.
②由曲線l的參數(shù)方程為
x=t
y=3+t.
(t
為參數(shù)),消去參數(shù)t可得:y-x=3,把x=ρcosθ,y=ρsinθ代入上式即可得出.
解答: 解:①如圖所示,
連接OC,∵CD是⊙O的切線,
∴OC⊥CD.
設(shè)⊙O的半徑為r,
在Rt△OCD中,OC2+CD2=OD2,
r2+(
3
)2=(r+1)2
,化為3=2r+1,解得r=1.
∴⊙O的面積S=π×12=π.
②由曲線l的參數(shù)方程為
x=t
y=3+t.
(t
為參數(shù)),消去參數(shù)t可得:y-x=3;
把x=ρcosθ,y=ρsinθ代入上式可得ρsinθ-ρcosθ=3.
故答案分別為:π,ρ(sinθ-cosθ)=3.
點(diǎn)評(píng):本題考查了圓的切線的性質(zhì)、勾股定理、直線的參數(shù)方程化為極坐標(biāo)方程,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線x-y+3=0與圓(x+2)2+(y-2)2=2相交A,B兩點(diǎn),
(1)求線段AB的長(zhǎng)度;  
(2)圓上有多少個(gè)點(diǎn)到直線AB的距離等于1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

先化簡(jiǎn),再求值:
m2-2m+1
m2-1
÷(m-1-
m-1
m+1
)
,其中m=
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(x)是定義在R上的偶函數(shù),且關(guān)于x的不等式f(x)<4x的解集為{x|1<x<3}.
(Ⅰ)求f(x)的解析式;
(Ⅱ)設(shè)F(x)=f(x)+bx,且當(dāng)x∈[-1,2]時(shí),函數(shù)F(x)的最小值為1,求實(shí)數(shù)b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ln
1+x
1-x
+sinx,則關(guān)于a的不等式f(a-2)+f(a2-4)<0的解集是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在[-6,9]內(nèi)任取一個(gè)實(shí)數(shù)m,設(shè)f(x)=-x2+mx+m,則函數(shù)f(x)的圖象與x軸有公共點(diǎn)的概率等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a=log20.5,b=0.2-0.1,c=0.21.1,則a,b,c的大小關(guān)系是(  )
A、a<b<c
B、c<a<b
C、a<c<b
D、b<c<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2
3
sinxcosx+2sin2x-1.
(Ⅰ)求函數(shù)f(x)的最小正周期;
(Ⅱ)當(dāng)x∈[-
12
,
π
6
]時(shí),求函數(shù)f(x)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若方程ax2+2x+1=0有且只有一個(gè)負(fù)根,則a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案