分析 根據(jù)一元二次方程以及一元二次不等式恒成立的問題進(jìn)行轉(zhuǎn)化先求出p的取值范圍,然后求函數(shù)的導(dǎo)數(shù),利用函數(shù)極值和導(dǎo)數(shù)之間的關(guān)系求出q的取值范圍,結(jié)合復(fù)合命題真假關(guān)系進(jìn)行求解即可.
解答 解:(1)由題設(shè)x1和x2是方程x2-ax-2=0的兩個(gè)實(shí)根,得x1+x2=a且x1x2=-2,
所以|x1-x2|=$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\sqrt{{a}^{2}+8}$,
當(dāng)a∈[-1,1]時(shí),a2+8的最大值為9,即|x1-x2|≤3.
由題意,不等式|m2-5m-3|≥|x1-x2|
對任意的實(shí)數(shù)a∈[-1,1]恒成立的m的解集等于不等式|m2-5m-3|≥3的解集,
由此不等式得m2-5m-3≤-3①或m2-5m-3≥3②
不等式①的解集為0≤m≤5.
不等式②的解集為m≤-1或m≥6.
因此,當(dāng)m≤-1或0≤m≤5或m≥6時(shí),p是正確的…(5分)
(2)對函數(shù)f(x)=x3+mx2+(m+$\frac{4}{3}$)x+6,求導(dǎo)得f′(x)=3x2+2mx+m+$\frac{4}{3}$.
令f′(x)=0,即3x2+2mx+m+$\frac{4}{3}$=0.
此一元二次方程的判別式
△=4m2-12(m+$\frac{4}{3}$)=4m2-12m-16.
若△=0,則f′(x)=0有兩個(gè)相等的實(shí)根,且f′(x)的符號(hào)如下:
x | (-∞,x0) | x0 | (x0,+∞) |
f′(x) | + | 0 | + |
x | (-∞,x1) | x1 | (x1,x2) | x2 | (x2,+∞) |
f′(x) | + | 0 | - | 0 | + |
點(diǎn)評 本題主要考查不等式恒成立以及函數(shù)極值和導(dǎo)數(shù)的關(guān)系,考查復(fù)合命題真假關(guān)系的應(yīng)用,根據(jù)條件求出命題p,q的等價(jià)條件是解決本題的關(guān)鍵.綜合性較強(qiáng),涉及的內(nèi)容較多.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 8-$\frac{π}{4}$ | B. | 8-$\frac{π}{2}$ | C. | 8-π | D. | 8-2π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | p∧q | B. | p∧(¬q) | C. | p∨(¬q) | D. | p∨q |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015-2016學(xué)年江蘇泰興中學(xué)高二上學(xué)期期末數(shù)學(xué)(文)試卷(解析版) 題型:填空題
設(shè)函數(shù)的導(dǎo)數(shù)為,且,則 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015-2016學(xué)年江蘇泰興中學(xué)高二上學(xué)期期末數(shù)學(xué)(文)試卷(解析版) 題型:填空題
已知函數(shù),則 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第30行 | B. | 第31行 | C. | 第32行 | D. | 第33行 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com