【題目】【選做題】在A、B、C、D四小題中只能選做2題,每小題10分,共計20分.請在答卷卡指定區(qū)域內作答.解答應寫出文字說明、證明過程或演算步驟.
A.選修4—1:幾何證明選講
如圖,△ABC的頂點A,C在圓O上,B在圓外,線段AB與圓O交于點M.
(1)若BC是圓O的切線,且AB=8,BC=4,求線段AM的長度;
(2)若線段BC與圓O交于另一點N,且AB=2AC,求證:BN=2MN.
B.選修4—2:矩陣與變換
設a,b∈R.若直線l:ax+y-7=0在矩陣A= 對應的變換作用下,得到的直線為l′:9x+y-91=0.求實數a,b的值.
C.選修4—4:坐標系與參數方程
在平面直角坐標系xOy中,直線l: (t為參數),與曲線C: (k為參數)交于A,B兩點,求線段AB的長.
D.選修4—5:不等式選講
設a≠b,求證:a4+6a2b2+b4>4ab(a2+b2).
【答案】見解析.
試題分析:作差比較,化簡得出原式=,即可作出證明。
試題解析:
證明: a4+6a2b2+b4-4ab(a2+b2)=(a2+b2)2-4ab(a2+b2)+4a2b2
=(a2+b2-2ab)2=(a-b)4.
因為a≠b,所以(a-b)4>0, 所以a4+6a2b2+b4>4ab(a2+b2).
【解析】試題分析:(1)因為是圓的切線,故由切割線定理得,設 ,列出方程,即可求解的值,得到的長;
(2)根據和相似,列出比例關系式,即可得出證明。
試題解析:
解:(1)因為BC是圓O的切線,故由切割線定理得BC2=BM·BA.
設AM=t,因為AB=8,BC=4,
所以42=8(8-t),解得t=6 ,即線段AM的長度為6.
(2)因為四邊形AMNC為圓內接四邊形,所以∠A=∠MNB.又∠B=∠B,所以△BMN∽△BCA,
所以=.
因為AB=2AC,所以BN=2MN.
B.選修4—2:矩陣與變換
設a,b∈R.若直線l:ax+y-7=0在矩陣A= 對應的變換作用下,得到的直線為l′:9x+y-91=0.求實數a,b的值.
科目:高中數學 來源: 題型:
【題目】春節(jié)期間,“厲行節(jié)約,反對浪費”之風悄然吹開,某市通過隨機詢問100名性別不同的居民是否能做到“光盤”行動,得到如下的列聯(lián)表:
做不到“光盤” | 能做到“光盤” | |
男 | 45 | 10 |
女 | 30 | 15 |
P(K2≥k) | 0.10 | 0.05 | 0.025 |
k | 2.706 | 3.841 | 5.024 |
附:
參照附表,得到的正確結論是( )
A.在犯錯誤的概率不超過l%的前提下,認為“該市居民能否做到‘光盤’與性別有關”
B.在犯錯誤的概率不超過l%的前提下,認為“該市居民能否做到‘光盤’與性別無關”
C.有90%以上的把握認為“該市居民能否做到‘光盤’與性別有關”
D.有90%以上的把握認為“該市居民能否做到‘光盤’與性別無關”
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=log4(2x+3﹣x2).
(1)求f(x)的定義域及單調區(qū)間;
(2)求f(x)的最大值,并求出取得最大值時x的值;
(3)設函數g(x)=log4[(a+2)x+4],若不等式f(x)≤g(x)在x∈(0,3)上恒成立,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,焦點在x軸上的橢圓C: 經過點(b,2e),其中e為橢圓C的離心率.過點T(1,0)作斜率為k(k>0)的直線l交橢圓C于A,B兩點(A在x軸下方).
(1)求橢圓C的標準方程;
(2)過點O且平行于l的直線交橢圓C于點M,N,求 的值;
(3)記直線l與y軸的交點為P.若,求直線l的斜率k.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在△ABC中,D為邊BC上一點,AD=6,BD=3,DC=2.
(1)若AD⊥BC,求∠BAC的大。
(2)若∠ABC=,求△ADC的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f′(x)是偶函數f(x)(x∈(﹣∞,0)∪(0,+∞)的導函數,f(﹣1)=0,當x>0時,xf′(x)﹣f(x)<0,則使得f(x)>0成立的x的取值范圍是( )
A.(﹣∞,﹣1)∪(0,1)
B.(﹣1,0)∪(1,+∞)
C.(﹣1,0)∪(0,1)
D.(0,1)∪(1,+∞)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知等差數列{an}滿足a3=7,a5+a7=26,數列{an}的前n項和Sn .
(1)求an及Sn;
(2)令bn= (n∈N*),求數列{bn}的前n項和Tn .
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com