若數(shù)據(jù)組k1,k2…k8的平均數(shù)為3,方差為3,則2(k2+3),2(k2+3)…2(k8+3)的方差為
 
考點(diǎn):極差、方差與標(biāo)準(zhǔn)差
專題:概率與統(tǒng)計(jì)
分析:由方差的性質(zhì)得2(k2+3),2(k2+3)…2(k8+3)的方差為22×3=12.
解答: 解:∵數(shù)據(jù)組k1,k2…k8的平均數(shù)為3,方差為3,
∴2(k2+3),2(k2+3)…2(k8+3)的方差為:
22×3=12.
故答案為:12.
點(diǎn)評(píng):本題考查方差的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意方差性質(zhì)的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)l,m是兩條不同的直線,a是一個(gè)平面,則下列命題正確的是( 。
A、若l⊥m,m⊥a,則l∥a
B、若m⊥l,l?a,則m⊥a
C、若m∥l,l∥a,則m∥a
D、若l⊥a,m⊥a,則l∥m

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在三棱柱ABC-A1B1C1中,AA1C1C是邊長(zhǎng)為4的正方形,AB⊥平面AA1C1C,AB=3.
(Ⅰ)求直線A C1與直線A1B夾角的余弦值;
(Ⅱ)求二面角A1-BC1-B1的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在海島A上有一座海拔1千米的山,山頂設(shè)有一個(gè)觀察站P,上午9時(shí)測(cè)得一輪船在海島北偏東30°,俯角為30°的B處,勻速直行10分鐘后,測(cè)得該船位于海島北偏西60°,俯角為45°的C處.從C處開始,該船航向改為正南方向,且速度大小不變,則該船經(jīng)過(guò)10分鐘后離開A點(diǎn)的距離為( 。
A、1千米
B、2千米
C、
3
千米
D、2
3
千米

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一袋中裝有大小相同,且分別標(biāo)有數(shù)字1,2,3,4的4個(gè)小球,若每次從袋中取出一個(gè)小球,不放回,則恰好第三次取到標(biāo)號(hào)為3的球的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a為實(shí)數(shù),函數(shù)f(x)=
1
3
x3-
1
2
x2
-2x+a.
(Ⅰ)求f(x)的極值;
(Ⅱ) 若方程f(x)=0僅有一個(gè)實(shí)數(shù)解,試求a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在如圖1所示的四邊形ABCD中,∠ABD=∠BDC=
π
2
,∠C=
π
6
,AB=BD=2.現(xiàn)將△ABD沿BD翻折,如圖2所示.
(Ⅰ)若二面角A-BD-C為直二面角,求證:AB⊥DC;
(Ⅱ)設(shè)E為線段BC上的點(diǎn),當(dāng)△ABE為等邊三角形時(shí),求二面角A-BD-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x3+2x+sinx(x∈R),f(x1)+f(x2)>0,則下列不等式正確的是( 。
A、x1>x2
B、x1<x2
C、x1+x2<0
D、x1+x2>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=x2+x,則數(shù)列{
1
f(n)
}(n∈N*)的前n項(xiàng)和為( 。
A、
n
n+1
B、
n+1
n+2
C、
n-1
n
D、
1
n+1

查看答案和解析>>

同步練習(xí)冊(cè)答案