12.如圖,在正方體ABCD-A1B1C1D1中,棱長為2,M、N、E分別為B1C1、C1C、D1C1的中點.
(Ⅰ)求證:A1B∥平面EMN;
(Ⅱ)求A1B與MN所成的角.

分析 (Ⅰ)連接CD1,推導出A1BCD1為平行四邊形,從而A1B∥EN,由此能證明A1B∥平面EMN.
(Ⅱ)由A1B∥EN,得∠ENM為A1B與MN所成的角,由此能求出A1B與MN所成的角.

解答 證明:(Ⅰ)連接CD1,∵N、E分別為C1C、D1C1的中點,
∴EN∥CD1,
又∵ABCD-A1B1C1D1為正方體,
∴A1BCD1為平行四邊形,∴A1B∥CD1,
∴A1B∥EN,
∵EN?面EMN,A1B?面EMN,
∴A1B∥平面EMN.
解:(Ⅱ)∵A1B∥EN,∴∠ENM為A1B與MN所成的角,
∵$EM=MN=EN=\sqrt{2}$,∴∠ENM=60°,
∴A1B與MN所成的角為60°.

點評 本題考查線面平行的證明,考查異面直線所成角的求法,是中檔題,解題時要認真審題,注意空間思維能力的培養(yǎng).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

17.函數(shù)f(x)=lnx在點P(x0,f(x0))處的切線l與函數(shù)g(x)=ex的圖象也相切,則滿足條件的切點P的個數(shù)有2個.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知△ABC中,$\frac{c-b}{c-a}$=$\frac{sinA}{sinC+sinB}$,則B=( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知lga、lgb是一元二次方程x2-3x+1=0的兩個根,且1ga>lgb,求$\frac{a}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知函數(shù)f(x)=|2x-1|+|2x+1|
(Ⅰ)畫出y=f(x)的圖象;
(Ⅱ)判斷f(x)的奇偶性
(Ⅲ)根據(jù)圖象填空:求f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知函數(shù)f(x)=ex-ax-1.
(1)若函數(shù)f(x)在x=ln2處取極值,求a的值;
(2)討論函數(shù)f(x)的單調性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.如圖是一個水平放置的透明無蓋的正方體容器,高12cm,將一個球放在容器口,再向容器內注水,當球面恰好接觸水面時測得水深為8cm,如果不計容器的厚度,則球的體積為( 。
A.$\frac{169π}{6}$cm3B.$\frac{676π}{3}$cm3C.$\frac{8788π}{3}$cm3D.$\frac{2197π}{6}$cm3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知動點M到點(8,0)的距離等于M到點(2,0)的距離的2倍.
(1)求動點M的軌跡C的方程;
(2)若直線y=kx-5與軌跡C沒有交點,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.x2+(y-2)2=0是x(y-2)=0的( 。
A.必要不充分條件B.充分不必要條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習冊答案